资源简介
(需要配置好opencv)支持多目标检测,人脸识别
代码片段和文件信息
#include “HaarDetect.h“
#include
#include
using namespace std;
CvHaarClassifierCascade* Load_Haar_Cascade()
{
CvHaarClassifierCascade* faceCascade = NULL;
const char *faceCascadeFilename = “cascades\\haarcascade_frontalface_alt.xml“;
faceCascade = (CvHaarClassifierCascade*)cvLoad(faceCascadeFilename000);
if(faceCascade==NULL)
{
cout<<“error in Load_Haar_Cascade:faceCascade is NULL“< }
return faceCascade;
}
void detectFace(IplImage* frameCvHaarClassifierCascade *faceCascadeCvRect *faceRectint &count)
{
const int flag = CV_HAAR_DO_CANNY_PRUNING;
CvSeq *detectedFaces;
CvMemStorage* storage;
const double scale_factore = 1.1f;
storage = cvCreateMemStorage(0);
cvClearMemStorage(storage);
if(faceCascade==NULL)
{
cout<<“error in detectFace:faceCascade is NULL!“< exit(1);
}
IplImage* grayframe = NULL;
grayframe = cvCreateImage(cvGetSize(frame)IPL_DEPTH_8U1);
cvCvtColor(framegrayframeCV_RGB2GRAY);
detectedFaces = cvHaarDetectobjects(grayframefaceCascadestoragescale_factore3flagcvSize(2020));
count = detectedFaces->total;
if(detectedFaces==NULL)
{
cout<<“error in detectFace:detectedFaces is NULL“< }
for(int i=0;i<(detectedFaces->total);i++)
{
faceRect[i] = *(CvRect *)cvGetSeqElem(detectedFacesi);
}
if(faceRect == NULL)
{
cout<<“error in detectFace:faceRect is NULL!“< }
cvReleaseMemStorage(&storage);
cvReleaseImage(&grayframe);
}
相关资源
- 一个人脸识别程序源码
- 基于OpenCV的数字识别468815
- 使用opencv去掉二值化图像中黑色面积
- LDA 人脸识别
- opencv环境配置
- halcon简单实现人脸识别.hdev
- win10 64位下编译的opencv4.5.5库,opencv
- 人脸识别开源SDK源码
- NVIDIAOpticalFlowSDK-79c6cee80a2df9a196f20afd6
- 百度人脸识别Demo
- delphi百度人脸识别离线SDK demo
- 讯飞人脸识别eclipse版
- Delphi7调用虹软人脸识别的测试
- opencv_contrib-3.4.0.zip
- opencv2.4.9源码分析——SIFT
- [b115]FPGA上运行人脸识别源代码.zip
- shape_predictor_68_face_landmarks.dat.bz2 68个标
- 用两个摄像头实现,双目标定,双目
- labview人脸识别283682
- 一种基于LBP和CNN的人脸识别算法
- opencv_traincascade训练分类器,手势识别
- opencv3.0交叉编译用parallel.cpp
- 基于opencv的图像识别识别图像中的色
- 基于CAFFE的人脸识别系统
- 基于openCV的识别特定颜色区域
- 基于OpenCV的分水岭算法实现
- QT+opencv+OCR 身份证号码,银行卡号识别
- opencv视频特定颜色区域识别
- 把RGB转换为HSV和HSI然后根据黄色和蓝
- LabVIEW的人脸识别代码
评论
共有 条评论