资源简介
In response to the exponentially increasing need to analyze vast amounts of data, Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition provides scientists with a simple but systematic introduction to neural networks. Beginning with an introductory discussion on the role of neural networks in scientific data analysis, this book provides a solid foundation of basic neural network concepts. It contains an overview of neural network architectures for practical data analysis followed by extensive step-by-step coverage on linear networks, as well as, multi-layer perceptron for nonlinear prediction and classification explaining all stages of processing and model development illustrated through practical examples and case studies. Later chapters present an extensive coverage on Self Organizing Maps for nonlinear data clustering, recurrent networks for linear nonlinear time series forecasting, and other network types suitable for scientific data analysis. With an easy to understand format using extensive graphical illustrations and multidisciplinary scientific context, this book fills the gap in the market for neural networks for multi-dimensional scientific data, and relates neural networks to statistics. Features x Explains neural networks in a multi-disciplinary context x Uses extensive graphical illustrations to explain complex mathematical concepts for quick and easy understanding ? Examines in-depth neural networks for linear and nonlinear prediction, classification, clustering and forecasting x Illustrates all stages of model development and interpretation of results, including data preprocessing, data dimensionality reduction, input selection, model development and validation, model uncertainty assessment, sensitivity analyses on inputs, errors and model parameters Sandhya Samarasinghe obtained her MSc in Mechanical Engineering from Lumumba University in Russia and an MS and PhD in Engineering from Virginia Tech, USA.
代码片段和文件信息
- 上一篇:重力小球安卓源代码
- 下一篇:基于中断控制的声光报警器的设计-接口课程设计
相关资源
- 神经网络与深度学习 中文版 PDF
- 复数版卷积神经网络,复数版CAFFE
- 基于LabVIEW的BP神经网络算法的设计实
- 基于人工神经网络的图像识别和分类
- 小波神经网络代码-交通流预测
- 人工神经网络原理及应用[朱大奇 史慧
- 使用神经网络与遗传算法的小游戏
- 卷积神经网络实现手写数字识别
- 搭建自己的神经网络
- 基于CNN的手写数字识别
- bp神经网络图像识别
- 神经网络HH方程
- 神经网络概述,简介和发展现状
- 模糊逻辑和神经网络预测高水平SCI文
- 神经网络(看完就能编出程序来).
- 神经网络入门代码(见系列博客)
- 基于BP神经网络的人脸识别的源代码
- 人工神经网络原理及仿真
- BP神经网络在GPS高程拟合中的应用
- Keras实现经典的卷积神经网络
- yolo论文理论梳理总结
- bp神经网络轴承故障诊断系统
- 神经网络模式识别及其实现(书籍和
- 吴恩达深度学习课程第一课 第二周神
- 基于遗传算法的BP神经网络在多目标优
- 论文:基于BP神经网络和GM1,1模型的
- 李宏毅课件卷积神经网络CNN课件笔记
- 基于卷积神经网络的医学图像癌变识
- 神经网络课件
- 神经网络设计
评论
共有 条评论