资源简介
我们在一般张量模型中研究不变算子。 我们表明表示理论提供了一个有效的框架,可以对(规范)对称Gd = U(N1)⊗⋯⊗U(Nd)的张量模型中的不变量进行计数和分类。 作为我们先前工作的延续和完成,我们提出了两种自然的不变式计数方法,一种用于任意Gd,另一种对大型Gd有效。 我们基于计数构造不变算符的基础,并计算其元素的相关因子。 与Gd的有限秩相关的基础对角化了自由理论的两点函数。 它类似于矩阵模型中使用的受限Schur基。 我们显示出,当我们将多矩阵模型中的Littlewood-Richardson数与普通张量模型中的Kronecker系数交换时,构造几乎相同。 我们从表示理论的角度深入探讨
代码片段和文件信息
相关资源
- 在矩阵模型的四次相互作用的大N极限
- 半包容最终状态的Fock空间投影算子
- 具有自然界的Bargmann-Fock空间中的Hei
- Hartree-Fock核基态的多体摄动理论
- 在任意HFB多准粒子状态之间的一体和
- 形核中奇形形的热容
- Bogoliubov开壳核的多体摄动理论
- 相对论Hartree-Fock-Bogoliubov方法中的超重
- D 6 R 4曲率校正,模块化图形函数和
- 狭义相对论变形中相互作用局部的时
- 对论文“重新审视-狄拉克振荡器
- 使用半整数自旋发生器扩展Poinca
- Anti-de Sitter空间和AdS / CFT的两个P
- 从Poincaré代数的闭合中得
- 一回路的κ-Poincaré不变
- Kubo-Martin-Schwinger权重的κ-Poin
- S函数,双曲几何的谱函数和顶点算子
- 由κ-Poincarér矩阵产生
- Looijenga的加权射影空间,Tate算法和
- 散射方程:从射影空间到热带草原
- I型跷跷板机制是中微子质量,重子不
- 修饰双对中微子混合和瘦素形成过程
- 寻找最小的反向跷跷板实现
- 最简单的跷跷板机制
- 跷跷板机制的自然性和Bogoliubov变换
- 在最小左右对称模型中解开跷跷板机
- 最小逆跷跷板机制中的暗物质
- I型跷跷板上沉重的Majorana中微子的界
- 跷跷板模型中违反立普顿风味的希格
- 在3-3-1模型中实现II型逆向跷跷板机制
评论
共有 条评论