资源简介
高阶吸引-排斥趋化模型解的全局存在及渐近行为研究,王晋,林可,本篇论文考虑一个有界区域Ω ⊂ Rn(n ≥ 2) 上的具有齐次Neumann 边界条件的模型ut = ∆u − ∇ · (χu∇v) + ∇ · (ξu∇w), x ∈ Ω, t > 0,τvt = �
代码片段和文件信息
相关资源
- Exact Conditions of Blow-up and Global Existen
- Multiplicity of positive solutions for p(x)
- Optimal recovery of functions on the sphere on
- Wavelet characterization for multipliers on So
- 一个比Harday-Littlewood猜想有效的计算公
- Strichartz estimates for the wave equation wit
- 广义g-函数在广义Campanato空间上的有界
- The Existence and Stability of Nontrivial St
- Existence of solutions for a p(x)-Kirchhof
- Existence of positive solutions for some singu
- The Existence of Optimal Control for Fully Cou
- Existence of Solutions to Volterra Integral Eq
- Existence of S-asymptotically ω-periodic
- Existence results of infinitely many weak solu
- The quasi-sure existence of solutions for inte
- Existence of positive solutions for singular h
- 不可逆性类完备随机过程的全拓展方
- Skyrme-Hartree-Fock计算11Be的晕结构
- Laguerre 超群上的 Riesz 位势
- Existence of Solutions for Degenerate Elliptic
- Centering Conditions for the Poincar‘
- Existence of nodal solution for semi-linear el
- 基于耗散结构理论的冲击地压防治初
- 基于耗散结构理论的ERP实施风险评估
- 电动汽车用感应电机反馈耗散哈密顿
- Delft3D对污染物的扩散输运计算
- 江苏省燕尾港天文潮的推算
- 一种新的射影重建算法
- Sinusoid envelope voltammetry - A novel voltam
- 超亲/疏水功能材料的仿生设计进展
评论
共有 条评论