资源简介
opencv条形码定位与识别,比较适合饮料瓶上的商标和二维码条形码混在一起的情况,使用ZBAR完成识别过程
代码片段和文件信息
#include
#include
#include
using namespace cv;
using namespace std;
using namespace zbar;
int main(int argcchar* argv[])
{
char fileNameString[100];
char windowNameString[50];
char resultFileNameSring[100];
Mat srcImagegrayImageblurImagethresholdImagegradientXImagegradientYImagegradientImagemorphImage;
for (int fileCount = 1;fileCount < 8;fileCount++)
{
sprintf(fileNameString“F:\\opencv\\条形码检测与识别\\barcode_0%d.jpg“fileCount);
sprintf(windowNameString“result 0%d“fileCount);
sprintf(resultFileNameSring“F:\\opencv\\条形码检测与识别\\barcodeResult_0%d.jpg“fileCount);
//读取图像
srcImage = imread(fileNameString);
if(srcImage.empty())
{
cout<<“image file read error“<
return -1;
}
//图像转换为灰度图像
if(srcImage.channels() == 3)
{
cvtColor(srcImagegrayImageCV_RGB2GRAY);
}
else
{
grayImage = srcImage.clone();
}
//建立图像的梯度幅值
Scharr(grayImagegradientXImageCV_32F10);
Scharr(grayImagegradientYImageCV_32F01);
//因为我们需要的条形码在需要X方向水平所以更多的关注X方向的梯度幅值而省略掉Y方向的梯度幅值
subtract(gradientXImagegradientYImagegradientImage);
//归一化为八位图像
convertScaleAbs(gradientImagegradientImage);
//看看得到的梯度图像是什么样子
//imshow(windowNameStringgradientImage);
//对图片进行相应的模糊化使一些噪点消除
blur(gradientImageblurImageSize(99));
//模糊化以后进行阈值化得到到对应的黑白二值化图像二值化的阈值可以根据实际情况调整
threshold(blurImagethresholdImage210255THRESH_BINARY);
//看看二值化图像
//imshow(windowNameStringthresholdImage);
//二值化以后的图像条形码之间的黑白没有连接起来就要进行形态学运算消除缝隙相当于小型的黑洞选择闭运算
//因为是长条之间的缝隙所以需要选择宽度大于长度
Mat kernel = getStructuringElement(MORPH_RECTSize(217));
morphologyEx(thresholdImagemorphImageMORPH_CLOSEkernel);
//看看形态学操作以后的图像
//imshow(windowNameStringmorphImage);
//现在要让条形码区域连接在一起所以选择膨胀腐蚀而且为了保持图形大小基本不变应该使用相同次数的膨胀腐蚀
//先腐蚀让其他区域的亮的地方变少最好是消除然后膨胀回来消除干扰迭代次数根据实际情况选择
erode(morphImage morphImage getStructuringElement(MORPH_RECT Size(33))Point(-1-1)4);
dilate(morphImage morphImage getStructuringElement(MORPH_RECT Size(33))Point(-1-1)4);
//看看形态学操作以后的图像
//imshow(windowNameStringmorphImage);
vector>contours;
vectorcontourArea;
//接下来对目标轮廓进行查找目标是为了计算图像面积
findContours(morphImagecontoursRETR_EXTERNALCHAIN_APPROX_SIMPLE);
//计算轮廓的面积并且存放
for(int i = 0; i < contours.size();i++)
{
contourArea.push_back(cv::contourArea(contours[i]));
}
//找出面积最大的轮廓
double maxValue;Point maxLoc;
minMaxLoc(contourArea NULL&maxValueNULL&maxLoc);
//计算面积最大的轮廓的最小的外包矩形
RotatedRect minRect = minAreaRect(contours[maxLoc.x]);
//为了防止找错要检查这个矩形的偏斜角度不能超标
//如果超标那就是没找到
if(minRect.angle<2.0)
{
//找到了矩形的角度但是这是一个旋转矩形所以还要重新获得一个外包最小矩形
Rect myRect = boundingRect(contours[maxLoc.x]);
//把这个矩形在源图像中画出来
//rectangle(srcImagemyRectScalar(0255255)3LINE_AA);
//看看显示效果找的对不对
//imshow(windowNameStringsrcImage);
//将扫描的图像裁剪下来并保存为相应的结果保留一些X方向的边界所以对rec
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 122315 2016-03-11 14:53 barcode_01.jpg
文件 104680 2016-03-11 16:27 barcode_02.jpg
文件 119950 2016-03-11 16:27 barcode_03.jpg
文件 118024 2016-03-11 16:27 barcode_04.jpg
文件 109951 2016-03-11 16:27 barcode_05.jpg
文件 120404 2016-03-11 16:27 barcode_06.jpg
文件 42683 2014-11-18 04:10 barcode_07.jpg
文件 4877 2016-03-15 10:40 main.cpp
相关资源
- uispy.exe+inspect.exe
- SIM7600CE 测试代码含基站定位
- opencv 三维建模点云详细
- 最全Opencv学习视频.txt
- 腾讯移动定位数据抓取.rar
- 船舶动力定位参数辨识
- opencv基础视频教程、实战项目视频.
- 贾志刚OpenCv视频教程
- TensorflowOpenCV.zip
- opencv410.zip
- nfc-emv (1)
- 水稻耐盐萌发能力的遗传分析和QTL定
- 水稻籽粒硒含量的QTL定位及遗传分析
- 利用染色体单片段代换系定位水稻结
- 论文研究 - 基质细胞衍生因子1的特定
- 黑马乐优商城19年初最新项目(老师的
- 火灾火焰及烟雾检测软件
- 基于捷联惯导的
- 基于S3C6410的矿用车载定位装置的设计
- 基于FPGA的智能车牌定位识别系统设计
- opencv4.0+相机标定+Qt5.9
- UWB定位STM32 TDOA无线时钟同步源代码
- 线路巡检-定位巡查-考勤gis系统
- FreeType库
- 输送带在线故障识别方法与OpenCV实现
- Zint 开发手册 Zint 开发手册
- 中国特有种大卫鼠耳蝠回声定位声波
- 人脸识别正样本图片库
- OpenCv_人脸识别源代码
- opencv3.0 鱼眼镜头标定校正代码
评论
共有 条评论