资源简介
KCF全称为Kernel Correlation Filter 核相关滤波算法。是在2014年由Joao F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista提出来的。本程序是KCF算法的python实现

代码片段和文件信息
import numpy as np
import cv2
from numba import jit
# constant
NUM_SECTOR = 9
FLT_EPSILON = 1e-07
@jit
def func1(dx dy boundary_x boundary_y height width numChannels):
r = np.zeros((height width) np.float32)
alfa = np.zeros((height width 2) np.int)
for j in xrange(1 height-1):
for i in xrange(1 width-1):
c = 0
x = dx[j i c]
y = dy[j i c]
r[j i] = np.sqrt(x*x + y*y)
for ch in xrange(1 numChannels):
tx = dx[j i ch]
ty = dy[j i ch]
magnitude = np.sqrt(tx*tx + ty*ty)
if(magnitude > r[j i]):
r[j i] = magnitude
c = ch
x = tx
y = ty
mmax = boundary_x[0]*x + boundary_y[0]*y
maxi = 0
for kk in xrange(0 NUM_SECTOR):
dotProd = boundary_x[kk]*x + boundary_y[kk]*y
if(dotProd > mmax):
mmax = dotProd
maxi = kk
elif(-dotProd > mmax):
mmax = -dotProd
maxi = kk + NUM_SECTOR
alfa[j i 0] = maxi % NUM_SECTOR
alfa[j i 1] = maxi
return r alfa
@jit
def func2(dx dy boundary_x boundary_y r alfa nearest w k height width sizeX sizeY p stringSize):
mapp = np.zeros((sizeX*sizeY*p) np.float32)
for i in xrange(sizeY):
for j in xrange(sizeX):
for ii in xrange(k):
for jj in xrange(k):
if((i * k + ii > 0) and (i * k + ii < height - 1) and (j * k + jj > 0) and (j * k + jj < width - 1)):
mapp[i*stringSize + j*p + alfa[k*i+iij*k+jj0]] += r[k*i+iij*k+jj] * w[ii0] * w[jj0]
mapp[i*stringSize + j*p + alfa[k*i+iij*k+jj1] + NUM_SECTOR] += r[k*i+iij*k+jj] * w[ii0] * w[jj0]
if((i + nearest[ii] >= 0) and (i + nearest[ii] <= sizeY - 1)):
mapp[(i+nearest[ii])*stringSize + j*p + alfa[k*i+iij*k+jj0]] += r[k*i+iij*k+jj] * w[ii1] * w[jj0]
mapp[(i+nearest[ii])*stringSize + j*p + alfa[k*i+iij*k+jj1] + NUM_SECTOR] += r[k*i+iij*k+jj] * w[ii1] * w[jj0]
if((j + nearest[jj] >= 0) and (j + nearest[jj] <= sizeX - 1)):
mapp[i*stringSize + (j+nearest[jj])*p + alfa[k*i+iij*k+jj0]] += r[k*i+iij*k+jj] * w[ii0] * w[jj1]
mapp[i*stringSize + (j+nearest[jj])*p + alfa[k*i+iij*k+jj1] + NUM_SECTOR] += r[k*i+iij*k+jj] * w[ii0] * w[jj1]
if((i + nearest[ii] >= 0) and (i + nearest[ii] <= sizeY - 1) and (j + nearest[jj] >= 0) and (j + nearest[jj] <= sizeX - 1)):
mapp[(i+nearest[ii])*stringSize + (j+nearest[jj])*p + alfa[k*i+iij*k+jj0]] += r[k*i+iij*k+jj] * w[ii1] * w[jj1]
mapp[(
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2017-01-06 15:52 KCFpy-master\
文件 1061 2017-01-06 15:52 KCFpy-master\LICENSE
文件 1807 2017-01-06 15:52 KCFpy-master\README.md
文件 12483 2017-01-06 15:52 KCFpy-master\fhog.py
文件 11668 2017-01-06 15:52 KCFpy-master\kcftracker.py
文件 2420 2017-01-06 15:52 KCFpy-master\run.py
相关资源
- 二级考试python试题12套(包括选择题和
- pywin32_python3.6_64位
- python+ selenium教程
- PycURL(Windows7/Win32)Python2.7安装包 P
- 英文原版-Scientific Computing with Python
- 7.图像风格迁移 基于深度学习 pyt
- 基于Python的学生管理系统
- A Byte of Python(简明Python教程)(第
- Python实例174946
- Python 人脸识别
- Python 人事管理系统
- 基于python-flask的个人博客系统
- 计算机视觉应用开发流程
- python 调用sftp断点续传文件
- python socket游戏
- 基于Python爬虫爬取天气预报信息
- python函数编程和讲解
- Python开发的个人博客
- 基于python的三层神经网络模型搭建
- python实现自动操作windows应用
- python人脸识别(opencv)
- python 绘图(方形、线条、圆形)
- python疫情卡UN管控
- python 连连看小游戏源码
- 基于PyQt5的视频播放器设计
- 一个简单的python爬虫
- csv文件行列转换python实现代码
- Python操作Mysql教程手册
- Python Machine Learning Case Studies
- python获取硬件信息
评论
共有 条评论