资源简介
有284个训练样本,273个测试样本,通过对数据的处理后进入基于LSTM的多层循环神经网络进行训练,测试样本测试准确率可达70+
代码片段和文件信息
“““
┏┛ ┻━━━━━┛ ┻┓
┃ ┃
┃ ━ ┃
┃ ┳┛ ┗┳ ┃
┃ ┃
┃ ┻ ┃
┃ ┃
┗━┓ ┏━━━┛
┃ ┃ 神兽保佑
┃ ┃ 代码无BUG!
┃ ┗━━━━━━━━━┓
┃ ┣┓
┃ ┏┛
┗━┓ ┓ ┏━━━┳ ┓ ┏━┛
┃ ┫ ┫ ┃ ┫ ┫
┗━┻━┛ ┗━┻━┛
“““
import tensorflow as tf
import numpy as np
import scipy.io
import time
data =scipy.io.loadmat(‘G2MM06_NormalDataSet_train.mat‘)
data1=scipy.io.loadmat(‘G2MM06_NormalDataSet_test.mat‘)
print(data1[‘DataSet‘][0][0][0][0][5])
pi=data1[‘DataSet‘][0][0][0][0][5]
print(pi[0][0]pi[0][1])
log_dir=‘/tmp/tensorflow/logs/12‘
“““
X_train[0]=np.array(X_train[0])
X_train[0]=np.array(X_train[0])
print(X_train[0][0][1]np.shape(X_train[0]))
“““
lst=[]
for m in range(284):
X_train = data[‘DataSet‘][m][0][0][0][2]
X_train=X_train.T
pi = data[‘DataSet‘][m][0][0][0][5]
for k in range(6):
for i in range(57):
for j in range(1+i):
lst.append(X_train[k][i][j])
lst.append(pi[0][0])
lst.append(pi[0][1])
X_trainNew1=np.array(lst)
X_trainNew1=X_trainNew1.reshape([-11655])
X_trainMu1=data[‘DataSet‘][0][0][0][0][1]
for i in range(283):
X_trainMu1=np.hstack((X_trainMu1data[‘DataSet‘][i+1][0][0][0][1]))
X_trainMu1=X_trainMu1.T
X_trainNew1 = np.hstack((X_trainNew1X_trainMu1))
print(“训练集“)
print(X_trainNew1np.shape(X_trainNew1))
lst3=[]
for m in range(284):
X_train = data[‘DataSet‘][m][0][0][0][4]
X_train=X_train.T
for k in range(6):
for i in range(57):
for j in range(1+i):
lst3.append(X_train[k][i][j])
X_trainNew2=np.array(lst3)
X_trainNew2=X_trainNew2.reshape([-11653])
X_trainMu2=data[‘DataSet‘][0][0][0][0][3]
for i in range(283):
X_trainMu2=np.hstack((X_trainMu2data[‘DataSet‘][i+1][0][0][0][3]))
X_trainMu2=X_trainMu2.T
X_trainNew2 = np.hstack((X_trainNew2X_trainMu2))
print(“训练集“)
print(X_trainNew2np.shape(X_trainNew2))
X_trainNew3=np.hstack((X_trainNew1X_trainNew2))
print(np.shape(X_trainNew3))
lst1=[]
for m in range(273):
X_test = data1[‘DataSet‘][m][0][0][0][2]
X_test=X_test.T
pi = data1[‘DataSet‘][m][0][0][0][5]
for k in range(6):
for i in range(57):
for j in range(1+i):
lst1.append(X_test[k][i][j])
lst1.append(pi[0][0])
lst1.append(pi[0][1])
X_testNew1=np.array(lst1)
X_testNew1=X_testNew1.reshape([-11655])
X_testMu1=data1[‘DataSet‘][0][0][0][0][1]
for i in range(272):
X_testMu1=np.hstack((X_testMu1data1[‘DataSet‘][i+1][0][0][0][1]))
X_testMu1=X_testMu1.T
X_testNew1 = np.hstack((X_testNew1X_testMu1))
print(“测试集“)
print(X_testNew1np.shape(X_testNew1))
lst4=[]
for m in range(273):
X_test = data1[‘DataSet‘][m][0][0][0][4]
X_test=X_test.T
for k in range(6):
for i in range(57):
for j in range(1+i):
lst4.append(X_test[k][i][j])
X_testNew2=np.array(lst4)
X_testNew2
- 上一篇:Qt5.6.1modbus测试程序含收发
- 下一篇:Itchat中文文件支持
相关资源
- 神经网络用于分类
- 基于python的三层神经网络模型搭建
- 012345手势识别神经网络代码
- numpy实现BP神经网络
- 卷积神经网络在医学图像分割中的研
- 神经网络gcn代码
- 神经网络拟合曲线
- 神经网络预测控制
- 卷积神经网络图像识别python代码pdf
- 卷积神经网络python
- Python-subpixel利用Tensorflow的一个子像素
- Python-神经网络模型能够从音频演讲中
- OCR:一个有趣的网页版手写数字识别
- NeMo_脉冲神经网络工具_spiking neural n
- 使用python自己实现神经网络操纵赛车
- 基于递归神经网络的广告点击率预估
- 卷积神经网络的Python实现【试读】1
- Make Your Own Neural Network - 搭建自己的神
- 利用脉冲耦合神经网络的图像处理.
- Python神经网络编程高清,带详细书签
- Python神经网络编程.zip
- python不使用框架实现卷积神经网络识
- CNN卷积神经网络PYTHON
- python实现的卷积神经网络CNN无框架
- 卷积神经网络图像识别python代码
- 卷积神经网络的Python实现 -《卷积神经
- 作业一_BP_SVM_RBF函数拟合.7z
- Michael Nielsen 的《Neural Networks and Deep
- 《Python神经网络编程》中文版PDF+英文
- 脉冲神经网络Python可运行
评论
共有 条评论