-
大小: 5KB文件类型: .py金币: 1下载: 0 次发布日期: 2021-05-29
- 语言: Python
- 标签: Iterative Ba MultiBoostin 机器学习
资源简介
Iterative Bagging和MultiBoosting 算法实现。并且比较了bias和variance的值。
代码片段和文件信息
#housing data
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
import numpy as np
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import AdaBoostRegressor
import random as rd
data0=np.loadtxt(“./ML_work1/housing.data“)
data=data0[::13]
labels=data0[:-1]
train_Xtest_X train_y test_y = train_test_split(data labels test_size=0.2)
def r_square(y_test y_test_result):
sstot = np.sum((y_test - y_test.mean())**2)
ssres = np.sum((y_test - y_test_result)**2)
return 1 - ssres / sstot
#multiboosting
MBO=BaggingRegressor(AdaBoostRegressor(base_estimator=DecisionTreeRegressor()n_estimators=20))
MBO.fit(train_Xtrain_y)
MBO_pre=MBO.predict(test_X)
MBO_R=r_square(test_yMBO_pre)
print(‘MBO mse: %f‘ % np.mean((test_y-MBO_pre)**2))
print(‘MBO R^2: %f‘% MBO_R)
#AdaBoost
ADB=AdaBoostRegressor(base_estimator=DecisionTreeRegressor()n_estimators=20)
ADB.fit(train_Xtrain_y)
ADB_pre=ADB.predict(test_X)
print(‘ADB mse:%f‘ % np.mean((test_y-ADB_pre)**2))
print(‘ADB R^2:%f‘% r_square(test_yADB_pre))
#Bagging
BAG=BaggingRegressor(base_estimator=DecisionTreeRegressor()n_estimators=20)
BAG.fit(train_Xtrain_y)
BAG_pre=BAG.predict(test_X)
print(‘BAG mse:%f‘ % np.mean((test_y-BAG_pre)**2))
print(‘BAG R^2:%f‘% r_square(test_yBAG_pre))
#Iterative Bagging
def boostrap(X Y):
idx = np.random.randint(low=0 high=X.shape[0] size=X.shape[0])
train_X train_y = X[idx] Y[idx]
all_idx = [i for i in range(0 X.shape[0])]
B_idx = list(set(all_idx).difference(set(idx)))
test_X test_y = X[np.array(B_idx)] Y[np.array(B_idx)]
return train_X train_y test_X test_y B_idx
# iterative bagging
def ITB_fit(train_Xtrain_y):
K = 20
iter_est = []
threshold = 1e10
Y = np.zeros(train_y.shape)
for i in range(train_y.shape[0]):
Y[i] = train_y[i]
n = 0
while 1:
y = np.zeros(train_y.shape)
y_count = np.zeros(train_y.shape)
y_new = np.zeros(train_y.shape)
# bagging
for i in range(K):
X_A y_A X_B y_B B_idx = boostrap(train_X Y)
clf = DecisionTreeRegressor()
clf.fit(X_A y_A)
iter_est.append(clf)
# y_res=Y-clf.p
相关资源
- Spacetime Texture Representation and Recogniti
- Python Visual Basic 混合开发
- python机器学习Sebastian Raschka中文最新完
- abaqus 网格自动划分插件 python语言
- Starting Out with Python 4th Global Edition
- Python-BilibiliLiveBarrage实时监控B站直播
- 英文原版-Bayesian Analysis with Python 1st
- Think Bayes
- 扫地僧Backtrader给力教程和源码
- centos7下 samba 4.8.3所有资源包含主文件
- bayes分类python
- Python for ProbabilityStatisticsand Machine Le
- Python编程:从入门到实践-PythonCrashC
- 分析三国演义和红楼梦,进行中文分
- aircraft battle.zip
- 使用python爬取猫眼影评并进行可视化
- python+opencv识别魔方颜色+kociemba算法应
- Kalman and Bayesian Filters in Python
- 结巴分词、词性标注以及停用词过滤
- 从记录到编程--Python在ABAQUS程序化参数
-
决策树ID3算法实验_数据集car_databa
- Python语言在Abaqus中的应用高清版pdf
- ABAQUS GUI程序开发指南 PYTHON语言
- bayer图像raw文件转DNG文件
- Python Machine Learning 2nd Edition [Sebastian
- 《贝叶斯思维:统计建模的Python学习法
- 全球野外区域地图(GIS)数据(glob
-
python3.6 ba
semap安装包 -
python2.7 32位 ba
semap -
python的ba
semap库安装包ba semap-1.2.
评论
共有 条评论