资源简介

Python——机器学习实战——Apriori算法进行关联分析

资源截图

代码片段和文件信息

‘‘‘
Created on Mar 24 2011
Ch 11 code
@author: Peter
‘‘‘
from numpy import *

def loadDataSet():
    return [[1 3 4] [2 3 5] [1 2 3 5] [2 5]]

def createC1(dataSet):
    C1 = []
    for transaction in dataSet:
        for item in transaction:
            if not [item] in C1:
                C1.append([item])
                
    C1.sort()
    return map(frozenset C1)#use frozen set so we
                            #can use it as a key in a dict    

def scanD(D Ck minSupport):
    ssCnt = {}
    for tid in D:
        for can in Ck:
            if can.issubset(tid):
                if not ssCnt.has_key(can): ssCnt[can]=1
                else: ssCnt[can] += 1
    numItems = float(len(D))
    retList = []
    supportData = {}
    for key in ssCnt:
        support = ssCnt[key]/numItems
        if support >= minSupport:
            retList.insert(0key)
        supportData[key] = support
    return retList supportData

def aprioriGen(Lk k): #creates Ck
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i+1 lenLk): 
            L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2]
            L1.sort(); L2.sort()
            if L1==L2: #if first k-2 elements are equal
                retList.append(Lk[i] | Lk[j]) #set union
    return retList

def apriori(dataSet minSupport = 0.5):
    C1 = createC1(dataSet)
    D = map(set dataSet)
    L1 supportData = scanD(D C1 minSupport)
    L = [L1]
    k = 2
    while (len(L[k-2]) > 0):
        Ck = aprioriGen(L[k-2] k)
        Lk supK = scanD(D Ck minSupport)#scan DB to get Lk
        supportData.update(supK)
        L.append(Lk)
        k += 1
    return L supportData

def generateRules(L supportData minConf=0.7):  #supportData is a dict coming from scanD
    bigRuleList = []
    for i in range(1 len(L)):#only get the sets with two or more items
        for freqSet in L[i]:
            H1 = [frozenset([item]) for item in freqSet]
            if (i > 1):
                rulesFromConseq(freqSet H1 supportData bigRuleList minConf)
            else:
                calcConf(freqSet H1 supportData bigRuleList minConf)
    return bigRuleList         

def calcConf(freqSet H supportData brl minConf=0.7):
    prunedH = [] #create new list to return
    for conseq in H:
        conf = supportData[freqSet]/supportData[freqSet-conseq] #calc confidence
        if conf >= minConf: 
            print freqSet-conseq‘-->‘conseq‘conf:‘conf
            brl.append((freqSet-conseq conseq conf))
            prunedH.append(conseq)
    return prunedH

def rulesFromConseq(freqSet H supportData brl minConf=0.7):
    m = len(H[0])
    if (len(freqSet) > (m + 1)): #try further merging
        Hmp1 = aprioriGen(H m+1)#create Hm+1 new candidates
        Hmp1 = calcConf(freqSet Hmp1 supportData brl minConf)
        if (len(Hmp1) > 1):    #need at least two sets to m

 属性            大小     日期    时间   名称
----------- ---------  ---------- -----  ----

     文件       5897  2018-08-27 18:26  Python——机器学习实战——Apriori算法进行关联分析\apriori.py

     文件       5236  2018-08-27 18:26  Python——机器学习实战——Apriori算法进行关联分析\apriori.pyc

     文件      38906  2018-08-27 18:26  Python——机器学习实战——Apriori算法进行关联分析\bills20DataSet.txt

     文件     137426  2018-08-27 18:26  Python——机器学习实战——Apriori算法进行关联分析\lawAssnRules.txt

     文件       1806  2018-08-27 18:26  Python——机器学习实战——Apriori算法进行关联分析\meaning20.txt

     文件     570408  2018-08-27 18:26  Python——机器学习实战——Apriori算法进行关联分析\mushroom.dat

     文件       5585  2018-08-27 18:26  Python——机器学习实战——Apriori算法进行关联分析\recent100bills.txt

     文件       1050  2018-08-27 18:26  Python——机器学习实战——Apriori算法进行关联分析\recent20bills.txt

     目录          0  2018-08-27 18:26  Python——机器学习实战——Apriori算法进行关联分析

----------- ---------  ---------- -----  ----

               766314                    9


评论

共有 条评论