资源简介
此资源主要是python代码 涵盖了人脸识别,深度学习,卷积神经网络等一些列的算法程序
代码片段和文件信息
# -*- coding: utf-8 -*-
“““
Created on Fri Jul 10 22:04:33 2015
@author: wepon
“““
import numpy as np
class DecisionTree:
“““决策树使用方法:
- 生成实例: clf = DecisionTrees(). 参数mode可选,ID3或C4.5,默认C4.5
- 训练,调用fit方法: clf.fit(Xy). Xy均为np.ndarray类型
- 预测,调用predict方法: clf.predict(X). X为np.ndarray类型
- 可视化决策树,调用showTree方法
“““
def __init__(selfmode=‘C4.5‘):
self._tree = None
if mode == ‘C4.5‘ or mode == ‘ID3‘:
self._mode = mode
else:
raise Exception(‘mode should be C4.5 or ID3‘)
def _calcEntropy(selfy):
“““
函数功能:计算熵
参数y:数据集的标签
“““
num = y.shape[0]
#统计y中不同label值的个数,并用字典labelCounts存储
labelCounts = {}
for label in y:
if label not in labelCounts.keys(): labelCounts[label] = 0
labelCounts[label] += 1
#计算熵
entropy = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/num
entropy -= prob * np.log2(prob)
return entropy
def _splitDataSet(selfXyindexvalue):
“““
函数功能:返回数据集中特征下标为index,特征值等于value的子数据集
“““
ret = []
featVec = X[:index]
X = X[:[i for i in range(X.shape[1]) if i!=index]]
for i in range(len(featVec)):
if featVec[i]==value:
ret.append(i)
return X[ret:]y[ret]
def _chooseBestFeatureToSplit_ID3(selfXy):
“““ID3
函数功能:对输入的数据集,选择最佳分割特征
参数dataSet:数据集,最后一列为label
主要变量说明:
numFeatures:特征个数
oldEntropy:原始数据集的熵
newEntropy:按某个特征分割数据集后的熵
infoGain:信息增益
bestInfoGain:记录最大的信息增益
bestFeatureIndex:信息增益最大时,所选择的分割特征的下标
“““
numFeatures = X.shape[1]
oldEntropy = self._calcEntropy(y)
bestInfoGain = 0.0
bestFeatureIndex = -1
#对每个特征都计算一下infoGain,并用bestInfoGain记录最大的那个
for i in range(numFeatures):
featList = X[:i]
uniqueVals = set(featList)
newEntropy = 0.0
#对第i个特征的各个value,得到各个子数据集,计算各个子数据集的熵,
#进一步地可以计算得到根据第i个特征分割原始数据集后的熵newEntropy
for value in uniqueVals:
sub_Xsub_y = self._splitDataSet(Xyivalue)
prob = len(sub_y)/float(len(y))
newEntropy += prob * self._calcEntropy(sub_y)
#计算信息增益,根据信息增益选择最佳分割特征
infoGain = oldEntropy - newEntropy
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeatureIndex = i
return bestFeatureIndex
def _chooseBestFeatureToSplit_C45(selfXy):
“““C4.5
ID3算法计算的是信息增益,C4.5算法计算的是信息增益比,对上面ID3版本的函数稍作修改即可
“““
numFeatures = X.shape[1]
ol
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2017-07-28 09:44 MachineLearning-master\
文件 180 2017-07-28 09:44 MachineLearning-master\.gitignore
目录 0 2017-07-28 09:44 MachineLearning-master\DecisionTree\
文件 9244 2017-07-28 09:44 MachineLearning-master\DecisionTree\id3_c45.py
文件 1304 2017-07-28 09:44 MachineLearning-master\DecisionTree\readme.md
文件 3283 2017-07-28 09:44 MachineLearning-master\DecisionTree\treePlotter.py
目录 0 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\
目录 0 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\cnn_LeNet\
文件 12645 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\cnn_LeNet\convolutional_mlp.py
文件 20706 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\cnn_LeNet\convolutional_mlp_commentate.py
目录 0 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\dive_into_keras\
文件 2197 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\dive_into_keras\cnn-svm.py
文件 2550 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\dive_into_keras\cnn.py
文件 756 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\dive_into_keras\data.py
文件 1432 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\dive_into_keras\get_feature_map.py
文件 3300 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\dive_into_keras\README.md
目录 0 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\FaceRecognition_CNN(olivettifaces)\
文件 1182905 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\FaceRecognition_CNN(olivettifaces)\olivettifaces.gif
文件 15554 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\FaceRecognition_CNN(olivettifaces)\train_CNN_olivettifaces.py
文件 7042 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\FaceRecognition_CNN(olivettifaces)\use_CNN_olivettifaces.py
目录 0 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\keras_usage\
文件 5233 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\keras_usage\cnn.py
文件 764 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\keras_usage\data.py
文件 9005 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\keras_usage\README.md
目录 0 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\mlp\
文件 14181 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\mlp\mlp.py
文件 17794 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\mlp\mlp_with_commentate.py
文件 527 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\readme.md
目录 0 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\Softmax_sgd(or logistic_sgd)\
文件 9456 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\Softmax_sgd(or logistic_sgd)\logistic_sgd.py
文件 19117 2017-07-28 09:44 MachineLearning-master\DeepLearning Tutorials\Softmax_sgd(or logistic_sgd)\logistic_sgd_commentate.py
............此处省略613个文件信息
相关资源
- 利用Python进行数据分析第二版(英文
- 流畅的Python 官方中文 高清完整.pdf版
- python记账小工具.rar
- 从Python开始学编程PDF完整版,带目录
- Hands-On_Reinforcement_Learning_with_Python
- 机器学习实战python实现
- Make Your Own Neural Network - 搭建自己的神
- Python核心编程第二版中文高清完整.
- 裘宗燕-数据结构与算法python描述-pp
- Pillow-8.0.1-cp37-cp37m-win_amd64.whl
- python2.6 opencv win 32
- Introduction to Python
- python飞机大战项目.zip
- 小甲鱼零基础学习python课后习题
- opencv3+python人脸检测和识别- 完整实战
- 小甲鱼《零基础入门学习Python》学习
- BrownLee Better Deep Learning
- python元胞自动机模拟生态环境草羊狼
- python 直方图规定化代码
- 简单粗暴 TensorFlow
- GRAYHATPYTHON高清.英文.书签版.pdf
- Python Pocket Reference 第五版-带书签目录
- Python编程无师自通——专业程序员的
- python win32com 编程参考手册
- Python简明教程第四版.rar
- python数据挖掘入门与实践 pdf 高清完整
- opencv3+python人脸检测和识别 完整项目
- opencv3视频中检测人脸python
- 笨办法学 Python(第四版pdf 英文原版
- 深入理解Python中文版高清PDF
评论
共有 条评论