资源简介
基于卡尔曼滤波算法的雷达追踪算法,采用matlab仿真实现
代码片段和文件信息
%
% Example 5.8
%
close all;
clear all;
clf;
disp(‘Covariance analysis of radar tracking problem‘);
disp(‘given as Example 5.8 in‘);
disp(‘M. S. Grewal and A. P. Andrews‘);
disp(‘Kalman Filtering: Theory and Practice Using MATLAB‘);
disp(‘4th Edition Wiley 2014.‘);
disp(‘ ‘);
disp(‘Plots histories of six mean squared state‘);
disp(‘uncertainties and six magnitudes of Kalman gains‘);
disp(‘for intersample intervals of 5 10 and 15 seconds.‘);
disp(‘ ‘);
disp(‘Six state variables:‘);
disp(‘ 1. Range to object being tracked.‘);
disp(‘ 2. Range rate of object being tracked.‘);
disp(‘ 3. object range maneuvering noise (pseudo state).‘);
disp(‘ 4. Bearing to object being tracked.‘);
disp(‘ 5. Bearing rate of object being tracked.‘);
disp(‘ 6. object bearing maneuvering noise (pseudo state).‘);
disp(‘Pseudo states are used for modeling correlated noise.‘);
%
sigma1sq = (103/3)^2;
sigma2sq = 1.3E-8;
sigmarsq = (1000)^2;
sigmatsq = (.017)^2;
rho = 0.5;
%
% State Transition matrix (the part not depending on T)
%
Phi = eye(6);
Phi(23) = 1;
Phi(56) = 1;
Phi(33) = rho;
Phi(66) = rho;
Q = zeros(6);
Q(33) = sigma1sq;
Q(66) = sigma2sq;
R = zeros(2);
R(11) = sigmarsq;
R(22) = sigmatsq;
H = zeros(26);
H(11) = 1;
H(24) = 1;
%
% arrays for saving data to be plotted
%
t = zeros(332); % time (for 3 plots)
rcov = zeros(332); % Range covariance
rrcov = zeros(332); % Range Rate covariance
bcov = zeros(332); % Bearing covariance
brcov = zeros(332); % Bearing Rate covariance
rrncov = zeros(332); % Range Rate Noise covariance
brncov = zeros(332); % Bearing Rate Noise covariance
rkg = zeros(332); % Range Kalman gain
rrkg = zeros(332); % Range Rate Kalman gain
bkg = zeros(332); % Bearing Kalman gain
brkg = zeros(332); % Bearing Rate Kalman gain
rrnkg = zeros(332); % Range Rate Noise Kalman gain
brnkg = zeros(332); % Bearing Rate Noise Kalman gain
N=0;
for T = 5:5:15
N=N+1;
disp([‘Simulating tracking at ‘num2str(T)‘ second intervals.‘]);
Phi(12) = T;
Phi(45) = T;
P = zeros(6);
P(11) = sigmarsq;
P(12) = sigmarsq/T;
P(21) = P(12);
P(22) = 2*sigmarsq/T^2 + sigma1sq;
P(33) = sigma1sq;
P(44) = sigmatsq;
P(45) = sigmatsq/T;
P(54) = P(45);
P(55) = 2*sigmatsq/T^2 + sigma2sq;
P(66) = sigma2sq;
for cycle=0:15
%
% Save a priori values
%
prior = 2*cycle+1;
t(Nprior) = T*cycle;
K = P*H‘/(H*P*H‘+R);
rcov(Nprior) = P(11); % Range covariance
rrcov(Nprior) = P(22); % Range Rate covariance
bcov(Nprior) = P(44); % Bearing covariance
brcov(Nprior) = P(55); % Bearing Rate covariance
rrncov(Nprior) = P(33); % Range Rate Noise covariance
brncov(Nprior) = P(66); % Bearing Rate Noise covariance
rkg
- 上一篇:遗传算法优化神经网络的matlab程序
- 下一篇:深度信息提取
相关资源
- matlab_OFDM调制解调(来自剑桥大学)
- Matlab路面裂缝识别69319
- 高灵敏度GPS接收机MATLAB仿真,附捕获
- 基于MATLAB的质点弹道计算与外弹道优
- 阵列天线的matlab仿真
- MATLAB 经典程序源代码大全
- MATLAB小波软阈值去噪代码33473
- 天线阵的波束形成在MATLAB仿真程序及
- 非线性SVM算法-matlab实现
- 《MATLAB 智能算法超级学习手册》-程序
- 组合导航matlab程序
- 读取txt文件内容matlab代码实现
- Matlab实现基于相关的模板匹配程序
- matlab优化工具箱讲解
- 基于MATLAB的快速傅里叶变换
- 光纤传输中的分布傅立叶算法matlab实
- 基于matlab的图像处理源程序
- matlab 椭圆拟合程序
- 算术编码解码matlab源代码
- optical_flow 光流法 matlab 实现程序
- 引导图像滤波器 Matlab实现
- 分形几何中一些经典图形的Matlab画法
- OFDM系统MATLAB仿真代码
- SVM工具箱(matlab中运行)
- 图像小波变换MatLab源代码
- LU分解的MATLAB实现
- 冈萨雷斯数字图像处理matlab版(第三
- 替代数据法的matlab程序
- 用matlab实现的多站定位系统性能仿真
- 通过不同方法进行粗糙集属性约简m
评论
共有 条评论