资源简介
在本文中我们展示
在人类视觉中一种有效的色彩外观模型,
其中也包含原则性的参数选择作为一种先天的空间联合机制,可以被推广
以获得优于最新技术的显着性模型楷模。尺度积分是通过逆小波变换实现的
通过一系列比例加权中心环绕响应。比例加权函数(称为ECSF)已被优化以更好地复制心理物理数据颜色的外观,和适当的尺寸中心环绕抑制窗口已被确定通过对眼睛固定数据训练高斯混合模型,从而避免了特别的参数选择。
论文:Saliency Estimation Using a Non-Parametric Low-Level Vision Model

代码片段和文件信息
function [w c] = DWT(image wlev)
% Implementation of Mallate Discrete Wavelet Transform.
%
% outputs:
% w: cell array of length wlev containing wavelet planes in 3
% orientations.
% c: cell array of length c containing residual planes.
%
% inputs:
% image: input image to be decomposed.
% wlev: # of wavelet levels.
% pad image so that dimensions are powers of 2:
image = add_padding(image);
% Defined 1D Gabor-like filter:
h = [1./16.1./4.3./8.1./4.1./16.];
energy = sum(h);
inv_energy = 1/energy;
h = h*inv_energy;
w = cell(wlev1);
c = cell(wlev1);
for s = 1:wlev
img_dim = size(image1);
orig_image = image;
inv_sum = 1/sum(h);
% decimate image along horizontal direction
prod = symmetric_filtering(image h)*inv_sum; % blur
HF = prod;
tmp_prod = zeros(size(prod));
tmp_prod(:1:2:img_dim) = prod(:1:2:img_dim); % downsample
tmp_prod2 = symmetric_filtering(tmp_prod h)*inv_sum; % blur downsampled image horizontally
GF = image - 2*tmp_prod2; % horizontal frequency info
% decimate image along vertical direction
prod = symmetric_filtering(HF h‘)*inv_sum; % blur
HHF = prod;
tmp_prod = zeros(size(prod));
tmp_prod(1:2:img_dim:) = prod(1:2:img_dim:); % downsample
tmp_prod2 = symmetric_filtering(tmp_prod h‘)*inv_sum; % blur downsampled image vertically
GHF = HF - 2*tmp_prod2; % vertical wavelet plane
% decimate GF along vertical direction
prod = symmetric_filtering(GF h‘)*inv_sum; % blur
tmp_prod = zeros(size(prod));
tmp_prod(1:2:img_dim:) = prod(1:2:img_dim:); % downsample
HGF = 2*symmetric_filtering(tmp_prod h‘)*inv_sum; % horizontal wavelet plane
% save horizontal and vertical wavelet planes:
w{s1}(::1) = HGF;
w{s1}(::2) = GHF;
% Downsample residual image HHF:
HHF = HHF(1:2:img_dim1:2:img_dim);
% save residual
C = HHF;
c{s1} = C;
% upsample residual image:
HHF = upsample(upsample(HHF2)‘2)‘;
% blur with vertical filter:
image = 2*symmetric_filtering(HHF h‘)*inv_sum;
% blur with horizontal filter:
image = 2*symmetric_filtering(image h)*inv_sum;
% Create and save wavelet plane:
DF = orig_image - (image + HGF + GHF);
w{s1}(::3) = DF;
% Downsample residual image:
image = HHF(1:2:img_dim1:2:img_dim);
end
end
function image_padded = add_padding(image)
% Pads image so that dimensions are powers of 2.
%
% outputs:
% image_padded: padded image.
%
% inputs:
% image: input image.
[height width] = size(image);
% pad image when dimensions are not powers of 2/equal to each other:
nearest_pow = 2^ceil(log2(max(widthheight)));
image_padded = zeros(nearest_pow);
image_padded(1:height1:width) = image;
image_padd
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
....... 65014 2016-01-07 07:59 SIM\3.jpg
....... 36922 2016-01-07 07:59 SIM\35.jpg
....... 3894 2016-01-07 07:59 SIM\DWT.m
....... 1512 2016-01-07 07:59 SIM\generate_csf.m
....... 1001 2016-01-07 07:59 SIM\IDWT.m
....... 1485 2016-01-07 07:59 SIM\README.txt
....... 1064 2016-01-07 07:59 SIM\rgb2opponent.m
....... 3957 2016-01-07 07:59 SIM\SIM.m
....... 730 2016-01-07 07:59 SIM\SIM_demo.m
....... 1050 2016-01-07 07:59 SIM\symmetric_filtering.m
目录 0 2018-05-29 16:42 SIM
----------- --------- ---------- ----- ----
116629 11
- 上一篇:显著性检测SR算法--Matlab
- 下一篇:显著性检测SWD--Matlab
相关资源
- matlab_OFDM调制解调(来自剑桥大学)
- Matlab路面裂缝识别69319
- 高灵敏度GPS接收机MATLAB仿真,附捕获
- 基于MATLAB的质点弹道计算与外弹道优
- 阵列天线的matlab仿真
- MATLAB 经典程序源代码大全
- MATLAB小波软阈值去噪代码33473
- 天线阵的波束形成在MATLAB仿真程序及
- 非线性SVM算法-matlab实现
- 《MATLAB 智能算法超级学习手册》-程序
- 组合导航matlab程序
- 读取txt文件内容matlab代码实现
- Matlab实现基于相关的模板匹配程序
- matlab优化工具箱讲解
- 基于MATLAB的快速傅里叶变换
- 光纤传输中的分布傅立叶算法matlab实
- 基于matlab的图像处理源程序
- matlab 椭圆拟合程序
- 算术编码解码matlab源代码
- optical_flow 光流法 matlab 实现程序
- 引导图像滤波器 Matlab实现
- 分形几何中一些经典图形的Matlab画法
- OFDM系统MATLAB仿真代码
- SVM工具箱(matlab中运行)
- 图像小波变换MatLab源代码
- LU分解的MATLAB实现
- 冈萨雷斯数字图像处理matlab版(第三
- 替代数据法的matlab程序
- 用matlab实现的多站定位系统性能仿真
- 通过不同方法进行粗糙集属性约简m
评论
共有 条评论