资源简介
利用多维高斯混合模型,建立背景,然后通过减背景获得前景区域,多维高斯混合模型具有较强的抗噪声,较好适应光线变化

代码片段和文件信息
% This m-file implements the mixture of Gaussians algorithm for background
% subtraction. It may be used free of charge for any purpose (commercial
% or otherwise) as long as the author (Seth Benton) is acknowledged.
clear all
% source = aviread(‘C:\Video\Source\traffic\san_fran_traffic_30sec_QVGA‘);
source = aviread(‘..\test_video\san_fran_traffic_30sec_QVGA_Cinepak‘);
% ----------------------- frame size variables -----------------------
fr = source(1).cdata; % read in 1st frame as background frame
fr_bw = rgb2gray(fr); % convert background to greyscale
fr_size = size(fr);
width = fr_size(2);
height = fr_size(1);
fg = zeros(height width);
bg_bw = zeros(height width);
% --------------------- mog variables -----------------------------------
C = 3; % number of gaussian components (typically 3-5)
M = 3; % number of background components
D = 2.5; % positive deviation threshold
alpha = 0.01; % learning rate (between 0 and 1) (from paper 0.01)
thresh = 0.25; % foreground threshold (0.25 or 0.75 in paper)
sd_init = 6; % initial standard deviation (for new components) var = 36 in paper
w = zeros(heightwidthC); % initialize weights array
mean = zeros(heightwidthC); % pixel means
sd = zeros(heightwidthC); % pixel standard deviations
u_diff = zeros(heightwidthC); % difference of each pixel from mean
p = alpha/(1/C); % initial p variable (used to update mean and sd)
rank = zeros(1C); % rank of components (w/sd)
% --------------------- initialize component means and weights -----------
pixel_depth = 8; % 8-bit resolution
pixel_range = 2^pixel_depth -1; % pixel range (# of possible values)
for i=1:height
for j=1:width
for k=1:C
mean(ijk) = rand*pixel_range; % means random (0-255)
w(ijk) = 1/C; % weights uniformly dist
sd(ijk) = sd_init; % initialize to sd_init
end
end
end
%--------------------- process frames -----------------------------------
for n = 1:length(source)
fr = source(n).cdata; % read in frame
fr_bw = rgb2gray(fr); % convert frame to grayscale
% calculate difference of pixel values from mean
for m=1:C
u_diff(::m) = abs(double(fr_bw) - double(mean(::m)));
end
% update gaussian components for each pixel
for i=1:height
for j=1:width
match = 0;
for k=1:C
if (abs(u_diff(ijk)) <= D*sd(ijk)) % pixel matches component
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 5224 2008-12-11 22:37 mixture_of_gaussians.m
- 上一篇:系统辨识参数辨识matlab程序
- 下一篇:消失点检测程序
相关资源
- matlab_OFDM调制解调(来自剑桥大学)
- Matlab路面裂缝识别69319
- 高灵敏度GPS接收机MATLAB仿真,附捕获
- 基于MATLAB的质点弹道计算与外弹道优
- 阵列天线的matlab仿真
- MATLAB 经典程序源代码大全
- MATLAB小波软阈值去噪代码33473
- 天线阵的波束形成在MATLAB仿真程序及
- 非线性SVM算法-matlab实现
- 《MATLAB 智能算法超级学习手册》-程序
- 组合导航matlab程序
- 读取txt文件内容matlab代码实现
- Matlab实现基于相关的模板匹配程序
- matlab优化工具箱讲解
- 基于MATLAB的快速傅里叶变换
- 光纤传输中的分布傅立叶算法matlab实
- 基于matlab的图像处理源程序
- matlab 椭圆拟合程序
- 算术编码解码matlab源代码
- optical_flow 光流法 matlab 实现程序
- 引导图像滤波器 Matlab实现
- 分形几何中一些经典图形的Matlab画法
- OFDM系统MATLAB仿真代码
- SVM工具箱(matlab中运行)
- 图像小波变换MatLab源代码
- LU分解的MATLAB实现
- 冈萨雷斯数字图像处理matlab版(第三
- 替代数据法的matlab程序
- 用matlab实现的多站定位系统性能仿真
- 通过不同方法进行粗糙集属性约简m
评论
共有 条评论