资源简介
随机森林回归matlab代码,可用于回归和分类,简单易用

代码片段和文件信息
%**************************************************************
%* mex interface to Andy Liaw et al.‘s C code (used in R package randomForest)
%* Added by Abhishek Jaiantilal ( abhishek.jaiantilal@colorado.edu )
%* License: GPLv2
%* Version: 0.02
%
% Calls Classification Random Forest
% A wrapper matlab file that calls the mex file
% This does prediction given the data and the model file
% Options depicted in predict function in http://cran.r-project.org/web/packages/randomForest/randomForest.pdf
%**************************************************************
%function [Y_hat votes] = classRF_predict(Xmodel extra_options)
% requires 2 arguments
% X: data matrix
% model: generated via classRF_train function
% extra_options.predict_all = predict_all if set will send all the prediction.
%
%
% Returns
% Y_hat - prediction for the data
% votes - unnormalized weights for the model
% prediction_per_tree - per tree prediction. the returned object .
% If predict.all=TRUE then the individual component of the returned object is a character
% matrix where each column contains the predicted class by a tree in the forest.
%
%
% Not yet implemented
% proximity
function [Y_new votes prediction_per_tree] = classRF_predict(Xmodel extra_options)
if nargin<2
error(‘need atleast 2 parametersX matrix and model‘);
end
if exist(‘extra_options‘‘var‘)
if isfield(extra_options‘predict_all‘)
predict_all = extra_options.predict_all;
end
end
if ~exist(‘predict_all‘‘var‘); predict_all=0;end
[Y_hatprediction_per_treevotes] = mexClassRF_predict(X‘model.nrnodesmodel.ntreemodel.xbestsplitmodel.classwtmodel.cutoffmodel.treemapmodel.nodestatusmodel.nodeclassmodel.bestvarmodel.ndbigtreemodel.nclass predict_all);
%keyboard
votes = votes‘;
clear mexClassRF_predict
Y_new = double(Y_hat);
new_labels = model.new_labels;
orig_labels = model.orig_labels;
for i=1:length(orig_labels)
Y_new(find(Y_hat==new_labels(i)))=Inf;
Y_new(isinf(Y_new))=orig_labels(i);
end
1;
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
.CA.... 2166 2009-05-17 03:11 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\classRF_predict.m
.CA.... 14829 2009-05-17 03:11 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\classRF_train.m
.CA.... 856 2009-04-25 20:39 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\Compile_Check
.CA.... 557 2009-05-17 03:11 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\compile_linux.m
.CA.... 1718 2010-02-06 16:44 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\compile_windows.m
.CA.... 48856 2009-04-25 20:39 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\data\twonorm.mat
.CA.... 96300 2009-04-25 20:39 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\data\X_twonorm.txt
.CA.... 600 2009-04-25 20:39 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\data\Y_twonorm.txt
.C.D... 0 2011-01-13 10:20 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\data
.CA.... 2693 2009-05-17 03:11 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\Makefile
.CA.... 2523 2009-05-17 03:11 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\Makefile.windows
.CA.... 20992 2010-02-06 16:29 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\mexClassRF_predict.mexw32
.CA.... 26624 2010-02-06 16:44 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\mexClassRF_predict.mexw64
.CA.... 32256 2010-02-06 16:29 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\mexClassRF_train.mexw32
.CA.... 46080 2010-02-06 16:44 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\mexClassRF_train.mexw64
.C.D... 0 2011-01-13 10:20 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub\linux64
.CA.... 6848 2009-04-25 21:39 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub\win32\rfsub.o
.C.D... 0 2011-01-13 10:20 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub\win32
.CA.... 9840 2009-04-25 20:39 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub\win64\rfsub.o
.C.D... 0 2011-01-13 10:20 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub\win64
.C.D... 0 2011-01-13 10:20 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub
.CA.... 3255 2010-02-06 17:05 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\README.txt
.CA.... 9840 2009-04-25 20:39 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\rfsub.o
.CA.... 33889 2009-05-17 03:11 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\classRF.cpp
.CA.... 8947 2009-05-17 03:11 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\classTree.cpp
.CA.... 7678 2009-04-25 20:39 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\cokus.cpp
.CA.... 1189 2009-04-25 20:39 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\cokus_test.cpp
.CA.... 5225 2009-05-17 03:11 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_predict.cpp
.CA.... 8545 2009-05-17 03:11 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\mex_ClassificationRF_train.cpp
.CA.... 4676 2009-04-25 20:39 RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\qsort.c
............此处省略48个文件信息
相关资源
- matlab_OFDM调制解调(来自剑桥大学)
- Matlab路面裂缝识别69319
- 高灵敏度GPS接收机MATLAB仿真,附捕获
- 基于MATLAB的质点弹道计算与外弹道优
- 阵列天线的matlab仿真
- MATLAB 经典程序源代码大全
- MATLAB小波软阈值去噪代码33473
- 天线阵的波束形成在MATLAB仿真程序及
- 非线性SVM算法-matlab实现
- 《MATLAB 智能算法超级学习手册》-程序
- 组合导航matlab程序
- 读取txt文件内容matlab代码实现
- Matlab实现基于相关的模板匹配程序
- matlab优化工具箱讲解
- 基于MATLAB的快速傅里叶变换
- 光纤传输中的分布傅立叶算法matlab实
- 基于matlab的图像处理源程序
- matlab 椭圆拟合程序
- 算术编码解码matlab源代码
- optical_flow 光流法 matlab 实现程序
- 引导图像滤波器 Matlab实现
- 分形几何中一些经典图形的Matlab画法
- OFDM系统MATLAB仿真代码
- SVM工具箱(matlab中运行)
- 图像小波变换MatLab源代码
- LU分解的MATLAB实现
- 冈萨雷斯数字图像处理matlab版(第三
- 替代数据法的matlab程序
- 用matlab实现的多站定位系统性能仿真
- 通过不同方法进行粗糙集属性约简m
评论
共有 条评论