• 大小: 76KB
    文件类型: .zip
    金币: 1
    下载: 0 次
    发布日期: 2021-06-04
  • 语言: Matlab
  • 标签: RANSAC  matlab  程序  

资源简介

国外高手编写的RANSAC算法工具箱,可以对二维和三维数据进行评估,内附例子。-Prepared by foreign experts RANSAC algorithm toolbox, can be two-dimensional and three-dimensional data to assess the attached example.

资源截图

代码片段和文件信息

function [results options] = RANSAC(X options)

% [results options] = RANSAC(X options)
%
% DESC:
% estimate the vector of parameters Theta using RANSAC (see source [1]
% [2])
%
% VERSION:
% 1.1.3
%
% INPUT:
%
% X                 = input data. The data id provided as a matrix that has
%                     dimesnsions 2dxN where d is the data dimensionality
%                     and N is the number of elements
%
% options           = structure containing the following fields:
%
%   sigma               = noise std
%   P_inlier            = Chi squared probability threshold for inliers
%                         (i.e. the probability that an point whose squared
%                          error is less than T_noise_squared is an inlier)
%                         (default = 0.99)
%   T_noise_squared     = Error threshold (overrides sigma)
%   epsilon             = False Alarm Rate (i.e. the probability we never
%                         pick a good minimal sample set) (default = 1e-3)
%   Ps                  = sampling probability ( 1 x size(X 2) )
%                         (default: uniform i.e. Ps is empty)
%   ind_tabu            = logical array indicating the elements that should
%                         not be considered to construct the MSS (default
%                         is empty)
%   est_fun             = function that estimates Theta.
%                         Should be in the form of:
%
%                         Theta = est_fun(X)
%
%   man_fun             = function that returns the residual error.
%                         Should be in the form of:
%
%                         [E T_noise_squared] = man_fun(Theta X)
%   mode                = algorithm variation
%                         ‘RANSAC‘  -> Fischler & Bolles
%                         ‘MSAC‘    -> Torr & Zisserman
%
%
%   max_iters           = maximum number of iterations  (default = inf)
%   min_iters           = minimum number of iterations  (default = 0)
%   max_no_updates      = maximum number of iterations with no updates
%                         (default = inf)
%   fix_seed            = true to fix the seed of the random number
%                         generator so that the results on the same data
%                         set are repeatable (default = false)
%   verbose             = true for verbose output
%                         (default = true)
%   notify_iters        = if verbose output is on then print some
%                         information every notify_iters iterations.
%                         If empty information is displayed only for
%                         updates (default = [])
%
% OUTPUT:
%
% results           = structure containing the following fields:
%
%   Theta               = estimated parameter vector
%   E                   = fitting error obtained from man_fun
%   CS                  = consensus set (true -> inliers false -> outliers)
%   J                   = cost of the solution
%   iter                = number of iterations
%

 属性            大小     日期    时间   名称
----------- ---------  ---------- -----  ----
     文件        1378  2008-07-10 10:35  RANSAC\Common\chi2inv_LUT.m
     文件       33667  2007-01-11 10:52  RANSAC\Common\chi2inv_LUT.mat
     文件         635  2008-07-10 10:35  RANSAC\Common\chi2inv_mathworks\generate_chi2inv_LUT.m
     文件        1144  2008-07-10 10:35  RANSAC\Common\get_consensus_set.m
     文件        1591  2008-07-10 10:35  RANSAC\Common\get_consensus_set_cost.m
     文件         657  2008-07-10 10:35  RANSAC\Common\get_iter_RANSAC.m
     文件        2535  2008-07-10 10:35  RANSAC\Common\get_minimal_sample_set.m
     文件         799  2008-07-10 10:35  RANSAC\Common\get_q_RANSAC.m
     文件        1092  2008-07-10 10:35  RANSAC\Common\get_rand.m
     文件        1888  2008-07-10 10:35  RANSAC\Common\get_rand_prob.m
     文件        5338  2008-07-10 10:35  RANSAC\Common\stabilize.m
     文件        7639  2008-06-28 17:55  RANSAC\COPYING.LESSER.txt
     文件       35147  2008-06-28 17:54  RANSAC\COPYING.txt
     文件        6148  2008-06-28 21:40  RANSAC\Examples\.DS_Store
     文件        1960  2008-07-10 10:35  RANSAC\Examples\test_RANSAC_homography.m
     文件        2337  2008-07-10 10:35  RANSAC\Examples\test_RANSAC_line.m
     文件        2610  2008-07-10 10:35  RANSAC\Examples\test_RANSAC_plane.m
     文件        1691  2008-07-10 10:35  RANSAC\Models\error_foo.m
     文件        1383  2008-07-10 10:35  RANSAC\Models\estimate_foo.m
     文件         848  2008-07-10 10:35  RANSAC\Models\Homography\cart2homo.m
     文件        1726  2008-07-10 10:35  RANSAC\Models\Homography\error_homography.m
     文件        1221  2008-07-10 10:35  RANSAC\Models\Homography\estimate_homography.m
     文件         749  2008-07-10 10:35  RANSAC\Models\Homography\homo2cart.m
     文件        2795  2008-07-10 10:35  RANSAC\Models\Homography\HomographyDLT.m
     文件        1119  2008-07-10 10:35  RANSAC\Models\Homography\normalize_points.m
     文件        1563  2008-07-10 10:35  RANSAC\Models\Line\error_line.m
     文件        1202  2008-07-10 10:35  RANSAC\Models\Line\estimate_line.m
     文件        1653  2008-07-10 10:35  RANSAC\Models\Plane\error_plane.m
     文件        1292  2008-07-10 10:35  RANSAC\Models\Plane\estimate_plane.m
     文件         768  2008-01-26 11:02  RANSAC\Models\README.txt
     文件       12280  2008-07-10 10:35  RANSAC\RANSAC.m
............此处省略2个文件信息

评论

共有 条评论