资源简介
凸集投影法(POCS)超分辨重建算法MATLAB实现
一个单一的pocs函数,使用方便
代码片段和文件信息
function y = pocs(sdelta_estfactor)
% POCS - reconstruct high resolution image using Projection On Convex Sets
% y = pocs(sdelta_estfactor)
% reconstruct an image with FACTOR times more pixels in both dimensions
% using Papoulis Gerchberg algorithm and using the shift and rotation
% information from DELTA_EST and PHI_EST
% in:
% s: images in cell array (s{1} s{2}...)
% delta_est(iDy:Dx) estimated shifts in y and x
% factor: gives size of reconstructed image
%% -----------------------------------------------------------------------
% SUPERRESOLUTION - Graphical User Interface for Super-Resolution Imaging
% Copyright (C) 2005-2007 Laboratory of Audiovisual Communications (LCAV)
% Ecole Polytechnique Federale de Lausanne (EPFL)
% CH-1015 Lausanne Switzerland
%
% This program is free software; you can redistribute it and/or modify it
% under the terms of the GNU General Public License as published by the
% Free Software Foundation; either version 2 of the License or (at your
% option) any later version. This software is distributed in the hope that
% it will be useful but without any warranty; without even the implied
% warranty of merchantability or fitness for a particular purpose.
% See the GNU General Public License for more details
% (enclosed in the file GPL).
%
% Latest modifications: August 20 2006 by Karim Krichane
max_iter = 50;
temp = upsample(upsample(s{1} factor)‘ factor)‘;
y = zeros(size(temp));
coord = find(temp);
y(coord) = temp(coord);
for i = 2:length(s)
temp = upsample(upsample(s{i} factor)‘ factor)‘;
temp = shift(temp round(delta_est(i 2)*factor) round(delta_est(i 1)*factor));
coord = find(temp);
y(coord) = temp(coord);
end
y_prev=y;
E=[];
iter=1;
blur =[.25 0 1 0 .25;...
0 1 2 1 0;...
1 2 4 2 1;...
0 1 2 1 0;...
.25 0 1 0 .25];
blur = blur / sum(blur(:));
wait_handle = waitbar(0 ‘重构中...‘ ‘Name‘ ‘超分辨率重构‘);
while iter < max_iter
waitbar(min(4*iter/max_iter 1) wait_handle);
y = imfilter(y blur);
for i = length(s):-1:1
temp = upsample(upsample(s{i} factor)‘ factor)‘;
temp = shift(temp round(delta_est(i 2)*factor) round(delta_est(i 1)*factor));
coord = find(temp);
y(coord) = temp(coord);
end
delta= norm(y-y_prev)/norm(y);
E=[E; iter delta];
iter = iter+1;
if iter>3
if abs(E(iter-32)-delta) <1e-4
break
end
end
y_prev=y;
% if mod(iter10)==2
% disp([‘iteration ‘ int2str(E(iter-11)) ‘ error ‘ num2str(E(iter-12))])
% end
end
close(wait_handle);
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 2651 2009-04-15 22:28 pocs.m
----------- --------- ---------- ----- ----
2651 1
- 上一篇:小波变换(去噪融合)和卡尔曼滤波的MATLAB实现
- 下一篇:四步移相位解包程序
相关资源
- 超分辨的MATLAB程序
- pocs超分辨率重建
- 超分辨率的matlab工具箱
- 插值法图像超分辨率重建
- 利用POCS实现图像超分辨率重建的mat
- 邻域嵌入的超分辨率matlab代码
- 基于正则化的图像超分辨重建matlab代
- 超分辨率重建的matlab代码
- 基于Matlab的多图像超分辨率重建算法
- 图像去模糊和超分辨处理
- CS KSVDSR
- 图像超分辨率重建
- super-resolutioncode 基于学习的超分辨率
- SRCNN 深度学习的图像超分辨率算法
- multiimagepocs 对多帧图像进行超分辨率
- imagereconstruction 基于小波和插值的超分
- map MAP超分辨率重建算法
- An-adaptive 自适应正则化的超分辨率重
- SR 利用稀疏矩阵思想进行图像的超分
- POCS-SuperResulution 本程序主要实现低分
- Total_variation-regularized
- SRmatlab W.T.Freeman 经典 基于例子的超分
- RL(Richardson-Lucy) 采用基于RL(Richa
-
FRSR 实现文献‘Fast and robust multif
r - POCS 基于凸集投影算法的超分辨率图像
- MAP 实现图像的超分辨率算法
- ScSR
- L1 基于L1范数的多帧图像超分辨率图像
- super-resolution-by-map 基于MAP的超分辨率
- SR--MAP
评论
共有 条评论