资源简介
Smart Antennas for Wireless Applications.This code creates Figure 7.2, plot of a Bartlett.MATLAB code
代码片段和文件信息
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%
%% ****************************************************** %%
%% * Smart Antennas for Wireless Applications w/ Matlab * %%
%% ****************************************************** %%
%% %%
%% Chapter 7: Ex 7.5 %%
%% %%
%% Author: Frank Gross %%
%% McGraw-Hill 2005 %%
%% Date: 1/26/2004 %%
%% %%
%% This code creates Figure 7.2 plot of a Bartlett %%
%% Pseudospectrum for theta1= -5 -10 & theta2 = 5 10 %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%------------------- Define Variables:--------------------%%
% M - # of elements in array %
% sig2 - noise variance %
% th1 th2 - angles of arrival %
% a1 a2 a - array steering vectors %
% A - Steering vector matrix %
% Rss - Source correlation matrix %
% Rxx - Array correlation matrix %
% P - Bartlett Psuedospectra %
%%---------------------------------------------------------%%
%%----- Given Values -----%%
M = 6; sig2 = 0.1;
disp(‘ ‘)
theta = input(‘ What are the AOA pairs for this plot in degrees? Enter 5 or 10: ‘);
disp(‘ ‘)
if theta == 5
th1 = -5*pi/180; th2 = 5*pi/180;
elseif theta == 10
th1 = -10*pi/180; th2 = 10*pi/180;
end
%%----- Create array steering vectors a1 & a2 -----%%
a1 = []; a2 = [];
i = 1:M;
% a1 = exp(1j*(i-1)*pi*sin(th1));
% a2 = exp(1j*(i-1)*pi*sin(th2));
a1 = exp(1j*(i-1)*4*pi/16);
a2 = exp(-1j*(i-1)*4*pi/16);
%%----- Create A Rss & Rxx -----%%
A = [a1.‘ a2.‘];
% Rss = [1 0;0 1]; Rxx = A*Rss*A‘ + sig2*eye(M);
Rss = [1 0;0 1];
Rxx = A*Rss*A‘ + sig2*eye(M);
%%----- Create Bartlett Psuedospectrum -----%%
for k = 1:180;
th(k) = -pi/6 + pi*k/(3*180);
clear a
a = [];
for jj = 1:M
a = [a exp(1j*(jj-1)*pi*sin(th(k)))];
end
Pb(k) = real(a*Rxx*a‘);
end
Pb_dB = 10*log10(Pb/max(Pb));
%%----- Plot Results -----%%
plot(th*180/piPb_dB‘k‘)
grid on
title([‘\bfFigure 7.2 - Bartlett Psuedospectra for \theta = +/-‘num2str(theta)‘^o‘])
xlabel(‘Angle‘)
ylabel(‘|P(\theta)| (dB)‘)
axis([-30 30 -30 10])
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 2657 2013-12-28 11:23 sa_Ex7_5.m
----------- --------- ---------- ----- ----
2657 1
- 上一篇:用matlab实现的图像二值化的三种方法
- 下一篇:DOA估计MATLAB代码
相关资源
- DOA估计MATLAB代码
- l1-svd稀疏重构算法
- 均匀阵列基于esprit算法的DOA估计
- PM,MUSIC四阶累积量等几种DOA估计算法
- capon算法的DOA估计MATLAB代码
- 随机信号的DOA估计方法
- 宽带信号的DOA估计.m
- 宽带信号 DOA估计 TCT算法.rar
- 三种esprit算法实现doa估计
- 求根music算法+最小范数music算法 DOA估
- MUSIC算法的DOA估计的matlab仿真程序
- capon算法Doa估计测角精度仿真matlab
- 压缩感知DOA估计
- mucis算法实现DOA估计
- doa估计算法
- 多种DOA估计算法MATLAB,如MUSIC、ESPRI
- 波达方向DOA估计的Capon算法以及Music算
- 新的宽带DOA估计方法TOFS (wideband D
- MUSIC算法的角度二维估计(2D MUSIC DO
- ISM_MATLAB 宽带信号的DOA估计算法
- 嵌套阵列DOA估计matlab例程
- L1OMPsnr 基于压缩感知的DOA估计
- DOA_CRB_MUSIC 单基地MIMO雷达的DOA估计
- SSR_DOA 稀疏表示doa估计
- MUSIC算法DOA估计 MATLAB程序
- 基于ESPRIT的DOA估计
- 相干信号元music算法DOA估计
- 改进的MUSIC算法对信号的DOA估计
评论
共有 条评论