资源简介
主要用于emd 分解,简单EMD,适合初级者练习使用。已经加了一些解释,希望能更易懂。
function imf = emd(x)
% Empiricial Mode Decomposition (Hilbert-Huang Transform)
% imf = emd(x)
% Func : findpeaks
代码片段和文件信息
%EMD computes Empirical Mode Decomposition
%
%
% Syntax
%
%
% IMF = EMD(X)
% IMF = EMD(X...‘Option_name‘Option_value...)
% IMF = EMD(XOPTS)
% [IMFORTNB_ITERATIONS] = EMD(...)
%
%
% Description
%
%
% IMF = EMD(X) where X is a real vector computes the Empirical Mode
% Decomposition [1] of X resulting in a matrix IMF containing 1 IMF per row the
% last one being the residue. The default stopping criterion is the one proposed
% in [2]:
%
% at each point mean_amplitude < THRESHOLD2*envelope_amplitude
% &
% mean of boolean array {(mean_amplitude)/(envelope_amplitude) > THRESHOLD} < TOLERANCE
% &
% |#zeros-#extrema|<=1
%
% where mean_amplitude = abs(envelope_max+envelope_min)/2
% and envelope_amplitude = abs(envelope_max-envelope_min)/2
%
% IMF = EMD(X) where X is a complex vector computes Bivariate Empirical Mode
% Decomposition [3] of X resulting in a matrix IMF containing 1 IMF per row the
% last one being the residue. The default stopping criterion is similar to the
% one proposed in [2]:
%
% at each point mean_amplitude < THRESHOLD2*envelope_amplitude
% &
% mean of boolean array {(mean_amplitude)/(envelope_amplitude) > THRESHOLD} < TOLERANCE
%
% where mean_amplitude and envelope_amplitude have definitions similar to the
% real case
%
% IMF = EMD(X...‘Option_name‘Option_value...) sets options Option_name to
% the specified Option_value (see Options)
%
% IMF = EMD(XOPTS) is equivalent to the above syntax provided OPTS is a struct
% object with field names corresponding to option names and field values being the
% associated values
%
% [IMFORTNB_ITERATIONS] = EMD(...) returns an index of orthogonality
% ________
% _ |IMF(i:).*IMF(j:)|
% ORT = \ _____________________
% /
% ? || X ||?% i~=j
%
% and the number of iterations to extract each mode in NB_ITERATIONS
%
%
% Options
%
%
% stopping criterion options:
%
% STOP: vector of stopping parameters [THRESHOLDTHRESHOLD2TOLERANCE]
% if the input vector‘s length is less than 3 only the first parameters are
% set the remaining ones taking default values.
% default: [0.050.50.05]
%
% FIX (int): disable the default stopping criterion and do exactly
% number of sifting iterations for each mode
%
% FIX_H (int): disable the default stopping criterion and do sifting
% iterations with |#zeros-#extrema|<=1 to stop [4]
%
% bivariate/complex EMD options:
%
% COMPLEX_VERSION: selects the algorithm used for complex EMD ([3])
% COMPLEX_VERSION = 1: “algorithm 1“
% COMPLEX_VERSION = 2: “algorithm 2“ (default)
%
% NDIRS: number of directions in which envelopes are computed (default 4)
% rem: the actual number of directions (according to [3]) is 2*NDIRS
%
% other options:
%
% T: sampling times (line vector) (default: 1:length(x))
%
% MAXITERATIONS: maximum number of sifting iterations for the computation of each
% mode (default: 2000)
%
% MAXMODES: maximum number of imfs extracted (default
- 上一篇:pid zn整定方法
- 下一篇:matlab仿真自抗扰控制器
相关资源
- EMD 算法MATLAB 程序
- Norden E.Huang的FEEMD算法
- EEMD的MATLAB程序
- eemd分解和作图
- eemd算法程序 matlab代码
- MATLAB信号处理EEMD工具箱
- EMD matlab实现源码
- EEMD集成经验模态分解matlab程序.rar
- emd和eemd算法的matlab源程序
- 中央大学 EMD HHT Matlab 源代码
- EMD HHT Matlab 信号分析,Google英文原版
- HHT变换的3种方法
- matlab自带HHT算法,最简洁的EMD分解
- ModelPredictiveControlSystemDesignandImplement
- 西储大学轴承故障分析matlab代码
- Matlab EMD工具箱+时频分析TFTB工具箱
- 经验模态分解+样本熵matlab程序代码
- 西储大学轴承数据及EMD代码
- MATLAB 2016可用 EMD工具箱
- 振动信号EMD分析matlab算法-abbr_96cb004
- EEMD算法工具包
- 基于EMD分解·和希尔伯特变换(HHT)的
- MATLAB——FEEMD.rar
- EEMD集合经验模态分解matlab程序代码
- 经验模态分解EMD对复杂信号进行分解
- 经验模态分解算法EMD MATLAB程序
- emd算法的matlab实现
- EMD过程中数据拟合的算法改进与实现
- emd程序,EMD分解算法
- 可以运行的EMD工具箱针对hhspectrum错误
评论
共有 条评论