资源简介
基于块稀疏信号的重构算法。稀疏贝叶斯学习算法。
代码片段和文件信息
function res = SBI(paras)
% res = SBI(paras)
%
% SBI(paras) performs DOA estimation using Sparse Bayesian Inference
%
% Input:
% paras.Y: M * T matrix sensor measurements at all snapshots
% paras.A: M * N matrix columns are the steering vectors for different directions
% paras.B: M * N matrix columns are derivatives of the steering vectors wrt. different directions
% paras.sigma2: initialization of noise variance
% paras.alpha: initialization of alpha
% paras.beta: initialization of beta
% paras.rho: rho
% paras.resolution: grid resolution for the directions
% paras.maxiter: maximum iteration
% paras.tol: stopping criterion
% paras.isKnownNoiseVar: true if known variance false if unknown
% paras.K: number of sources
% Output:
% res.mu: mean estimation
% res.Sigma: variance estimation
% res.sigma2: estimated noise variance
% res.sigma2seq: estimated noise variance at all iterations
% res.alpha: reconstructed alpha
% res.beta: reconstructed beta
% res.iter: iteration used in the algorithm
% res.ML: maximum likelihood function value at all iterations
%
% Written by Zai Yang 19 Jul 2011
% reference: Zai Yang Lihua Xie and Cishen Zhang
% “Off-grid direction of arrival estimation using sparse Bayesian inference“
eps = 1e-16;
Y = paras.Y;
A = paras.A;
B = paras.B;
[M T] = size(Y);
N = size(A 2);
alpha0 = 1 / paras.sigma2;
rho = paras.rho / T;
beta = paras.beta;
alpha = paras.alpha;
r = paras.resolution;
maxiter = paras.maxiter;
tol = paras.tolerance;
if isfield(paras ‘isKnownNoiseVar‘) && ~isempty(paras.isKnownNoiseVar)
isKnownNoiseVar = paras.isKnownNoiseVar;
else
isKnownNoiseVar = false;
end
if isKnownNoiseVar
a = 1;
b = T * M * paras.knownsigma2;
else
a = 1e-4;
b = 1e-4;
end
if isfield(paras ‘K‘) && ~isempty(paras.K)
K = paras.K;
else
K = min(T M-1);
end
idx = [];
BHB = B‘ * B;
converged = false;
iter_beta = 1;
iter = 0;
ML = zeros(maxiter1);
alpha0seq = zeros(maxiter1);
while ~converged
iter = iter + 1;
Phi = A;
Phi(:idx) = A(:idx) + B(:idx) * diag(beta(idx));
alpha_last = alpha;
C = 1 / alpha0 * eye(M) + Phi * diag(alpha) * Phi‘;
% Sigma = diag(alpha) - diag(alpha) * Phi‘ / C * Phi * di
- 上一篇:鸡群优化算法和鸟群算法源代码
- 下一篇:基于半色调技术的图像影藏
相关资源
- matlab_OFDM调制解调(来自剑桥大学)
- Matlab路面裂缝识别69319
- 高灵敏度GPS接收机MATLAB仿真,附捕获
- 基于MATLAB的质点弹道计算与外弹道优
- 阵列天线的matlab仿真
- MATLAB 经典程序源代码大全
- MATLAB小波软阈值去噪代码33473
- 天线阵的波束形成在MATLAB仿真程序及
- 非线性SVM算法-matlab实现
- 《MATLAB 智能算法超级学习手册》-程序
- 组合导航matlab程序
- 读取txt文件内容matlab代码实现
- Matlab实现基于相关的模板匹配程序
- matlab优化工具箱讲解
- 基于MATLAB的快速傅里叶变换
- 光纤传输中的分布傅立叶算法matlab实
- 基于matlab的图像处理源程序
- matlab 椭圆拟合程序
- 算术编码解码matlab源代码
- optical_flow 光流法 matlab 实现程序
- 引导图像滤波器 Matlab实现
- 分形几何中一些经典图形的Matlab画法
- OFDM系统MATLAB仿真代码
- SVM工具箱(matlab中运行)
- 图像小波变换MatLab源代码
- LU分解的MATLAB实现
- 冈萨雷斯数字图像处理matlab版(第三
- 替代数据法的matlab程序
- 用matlab实现的多站定位系统性能仿真
- 通过不同方法进行粗糙集属性约简m
评论
共有 条评论