资源简介
RANSAC为RANdom SAmple Consensus的缩写,它是根据一组包含异常数据的样本数据集,计算出数据的数学模型参数,得到有效样本数据的算法。
代码片段和文件信息
function [results options] = RANSAC(X options)
% [results options] = RANSAC(X options)
%
% DESC:
% estimate the vector of parameters Theta using RANSAC (see source [1]
% [2])
%
% VERSION:
% 1.1.5
%
% INPUT:
%
% X = input data. The data id provided as a matrix that has
% dimesnsions 2dxN where d is the data dimensionality
% and N is the number of elements
%
% options = structure containing the following fields:
%
% sigma = noise std
% P_inlier = Chi squared probability threshold for inliers
% (i.e. the probability that an point whose squared
% error is less than T_noise_squared is an inlier)
% (default = 0.99)
% T_noise_squared = Error threshold (overrides sigma)
% epsilon = False Alarm Rate (i.e. the probability we never
% pick a good minimal sample set) (default = 1e-3)
% Ps = sampling probability ( 1 x size(X 2) )
% (default: uniform i.e. Ps is empty)
% ind_tabu = logical array indicating the elements that should
% not be considered to construct the MSS (default
% is empty)
% validateMSS_fun = function that validates a MSS
% Should be in the form of:
%
% flag = validateMSS_foo(X s)
%
% validateTheta_fun = function that validates a parameter vector
% Should be in the form of:
%
% flag = validateTheta_foo(X Theta s)
%
% est_fun = function that estimates Theta.
% Should be in the form of:
%
% [Theta k] = estimate_foo(X s)
%
% man_fun = function that returns the residual error.
% Should be in the form of:
%
% [E T_noise_squared] = man_fun(Theta X)
%
% mode = algorithm flavour
% ‘RANSAC‘ -> Fischler & Bolles
% ‘MSAC‘ -> Torr & Zisserman
%
%
% max_iters = maximum number of iterations (default = inf)
% min_iters = minimum number of iterations (default = 0)
% max_no_updates = maximum number of iterations with no updates
% (default = inf)
% fix_seed = true to fix the seed of the random number
% generator so that the results on the same data
% set are repeatable (default = false)
% reestimate = true to resestimate the parameter vector using
% all the detected inliers
% (default = false)
% verbose = true for verbose output
% (default = true)
% notify_iters = if verbose output is on then print some
%
- 上一篇:三次样条插值函数的构造与Matlab实现
- 下一篇:HOG特征matlab代码实现
相关资源
- matlab_OFDM调制解调(来自剑桥大学)
- Matlab路面裂缝识别69319
- 高灵敏度GPS接收机MATLAB仿真,附捕获
- 基于MATLAB的质点弹道计算与外弹道优
- 阵列天线的matlab仿真
- MATLAB 经典程序源代码大全
- MATLAB小波软阈值去噪代码33473
- 天线阵的波束形成在MATLAB仿真程序及
- 非线性SVM算法-matlab实现
- 《MATLAB 智能算法超级学习手册》-程序
- 组合导航matlab程序
- 读取txt文件内容matlab代码实现
- Matlab实现基于相关的模板匹配程序
- matlab优化工具箱讲解
- 基于MATLAB的快速傅里叶变换
- 光纤传输中的分布傅立叶算法matlab实
- 基于matlab的图像处理源程序
- matlab 椭圆拟合程序
- 算术编码解码matlab源代码
- optical_flow 光流法 matlab 实现程序
- 引导图像滤波器 Matlab实现
- 分形几何中一些经典图形的Matlab画法
- OFDM系统MATLAB仿真代码
- SVM工具箱(matlab中运行)
- 图像小波变换MatLab源代码
- LU分解的MATLAB实现
- 冈萨雷斯数字图像处理matlab版(第三
- 替代数据法的matlab程序
- 用matlab实现的多站定位系统性能仿真
- 通过不同方法进行粗糙集属性约简m
评论
共有 条评论