资源简介
the matlab code for calculating laser motion using icp(iterated closest point)
代码片段和文件信息
function [TR TT] = icp(modeldatamax_itermin_iterfittingthresinit_flagtes_flagrefpnt)
% ICP Iterative Closest Point Algorithm. Takes use of
% Delaunay tesselation of points in model.
%
% Ordinary usage:
%
% [R T] = icp(modeldata)
%
% ICP fit points in data to the points in model.
% Fit with respect to minimize the sum of square
% errors with the closest model points and data points.
%
% INPUT:
%
% model - matrix with model points [Pm_1 Pm_2 ... Pm_nmod]
% data - matrix with data points [Pd_1 Pd_2 ... Pd_ndat]
%
% OUTPUT:
%
% R - rotation matrix and
% T - translation vector accordingly so
%
% newdata = R*data + T .
%
% newdata are transformed data points to fit model
%
%
% Special usage:
%
% icp(model) or icp(modeltes_flag)
%
% ICP creates a Delaunay tessellation of points in
% model and save it as global variable Tes. ICP also
% saves two global variables ir and jc for tes_flag=1 (default) or
% Tesind and Tesver for tes_flag=2 which
% makes it easy to find in the tesselation. To use the global variables
% in icp put tes_flag to 0.
%
%
% Other usage:
%
% [R T] = icp(modeldatamax_itermin_iter...
% fittingthresinit_flagtes_flag)
%
% INPUT:
%
% max_iter - maximum number of iterations. Default=104
%
% min_iter - minimum number of iterations. Default=4
%
% fitting - =2 Fit with respect to minimize the sum of square errors. (default)
% alt. =[2w] where w is a weight vector corresponding to data.
% w is a vector of same length as data.
% Fit with respect to minimize the weighted sum of square errors.
% =3 Fit with respect to minimize the sum to the amount 0.95
% of the closest square errors.
% alt. =[3lambda] 0.0 % In each iteration only the amount lambda of the closest
% points will affect the translation and rotation.
% If 1 % of the closest points will affect the translation and
% rotation in each iteration.
%
% thres - error differens threshold for stop iterations. Default 1e-5
%
% init_flag - =0 no initial starting transformation
% =1 transform data so the mean value of
% data is equal to mean value of model.
% No rotation. (init_flag=1 default)
%
% tes_flag - =0 No new tesselation has to be done. There
% alredy exists one for the current model points.
% =1 A new tesselation of the model points will
% be done. (default)
% =2 A new tesselation of the model points will
% be done. Another search strategy than tes_flag=1
% =3 The c
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 30309 2009-05-28 14:10 icp.m
文件 1335 2009-05-28 14:10 license.txt
- 上一篇:利用matlab提高图像对比度
- 下一篇:music算法的matlab程序
相关资源
- music算法的matlab程序
- 利用matlab提高图像对比度
- sift图片拼接matlab
- MATLAB场景图片文字定位text detection
- MATLAB CRC校验码计算
- 基于matlab环境下的语者识别
- Matlab实现高斯随即过程
- 关于MATLAB优化TSP算法的完善及推广
- city_location.mat
- matlab绘制三维图
- 半监督分类算法源程序
- retinex的MATLAB实现程序
- 模式识别大作业K均值算法matlab平台实
- 图像字符分割
- Kmean图像聚类算法
- 六自由度机器人matlab源程序
- matlab模糊控制规则文件
- matlab实现BLDC的模糊控制调速
- 不动点迭代法解非线性方程的newton法
- RVM分类器及回归 matlab源代码
- Matlab实现ISODATA算法对iris数据分类
- matlab 爱的表白
- matlab神曲卡农
- matlab人脸识别代码
- 差分方程模型matlab代码
- ID3算法matlab
- 动作能量图
- LMS matlab
- 8阵元均匀圆阵MUSIC DOA算法的matlab程序
- 单片空间后方交会matlab
评论
共有 条评论