资源简介
卡尔曼程序 UKF程序 matlab,调试已经通过!欢迎探讨!

代码片段和文件信息
% KALMANF - updates a system state vector estimate based upon an
% observation using a discrete Kalman filter.
%
% Version 1.0 June 30 2004
%
% This tutorial function was written by Michael C. Kleder
%
% INTRODUCTION
%
% Many people have heard of Kalman filtering but regard the topic
% as mysterious. While it‘s true that deriving the Kalman filter and
% proving mathematically that it is “optimal“ under a variety of
% circumstances can be rather intense applying the filter to
% a basic linear system is actually very easy. This Matlab file is
% intended to demonstrate that.
%
% An excellent paper on Kalman filtering at the introductory level
% without detailing the mathematical underpinnings is:
% “An Introduction to the Kalman Filter“
% Greg Welch and Gary Bishop University of North Carolina
% http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
%
% PURPOSE:
%
% The purpose of each iteration of a Kalman filter is to update
% the estimate of the state vector of a system (and the covariance
% of that vector) based upon the information in a new observation.
% The version of the Kalman filter in this function assumes that
% observations occur at fixed discrete time intervals. Also this
% function assumes a linear system meaning that the time evolution
% of the state vector can be calculated by means of a state transition
% matrix.
%
% USAGE:
%
% s = kalmanf(s)
%
% “s“ is a “system“ struct containing various fields used as input
% and output. The state estimate “x“ and its covariance “P“ are
% updated by the function. The other fields describe the mechanics
% of the system and are left unchanged. A calling routine may change
% these other fields as needed if state dynamics are time-dependent;
% otherwise they should be left alone after initial values are set.
% The exceptions are the observation vectro “z“ and the input control
% (or forcing function) “u.“ If there is an input function then
% “u“ should be set to some nonzero value by the calling routine.
%
% SYSTEM DYNAMICS:
%
% The system evolves according to the following difference equations
% where quantities are further defined below:
%
% x = Ax + Bu + w meaning the state vector x evolves during one time
% step by premultiplying by the “state transition
% matrix“ A. There is optionally (if nonzero) an input
% vector u which affects the state linearly and this
% linear effect on the state is represented by
% premultiplying by the “input matrix“ B. There is also
% gaussian process noise w.
% z = Hx + v meaning the observation vector z is a linear function
% of the state vector and this linear relationship is
% represented by premultiplication by “observation
% matrix“ H. There is also gaussian measurement
% noise v.
% where w ~ N(0Q) me
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 4326 2010-12-12 05:46 ukf.m
文件 7652 2012-02-28 11:24 kalmanf.m
----------- --------- ---------- ----- ----
11978 2
- 上一篇:TCR仿真模型
- 下一篇:基于MATLAB的蓝牙测距代码
相关资源
- 串行级联cpm系统MATLAB仿真
- matlab_OFDM调制解调(来自剑桥大学)
- Matlab路面裂缝识别69319
- 高灵敏度GPS接收机MATLAB仿真,附捕获
- 基于MATLAB的质点弹道计算与外弹道优
- 阵列天线的matlab仿真
- MATLAB 经典程序源代码大全
- MATLAB小波软阈值去噪代码33473
- 天线阵的波束形成在MATLAB仿真程序及
- 非线性SVM算法-matlab实现
- 《MATLAB 智能算法超级学习手册》-程序
- 组合导航matlab程序
- 读取txt文件内容matlab代码实现
- Matlab实现基于相关的模板匹配程序
- matlab优化工具箱讲解
- 基于MATLAB的快速傅里叶变换
- 光纤传输中的分布傅立叶算法matlab实
- 基于matlab的图像处理源程序
- matlab 椭圆拟合程序
- 算术编码解码matlab源代码
- optical_flow 光流法 matlab 实现程序
- 引导图像滤波器 Matlab实现
- 分形几何中一些经典图形的Matlab画法
- OFDM系统MATLAB仿真代码
- SVM工具箱(matlab中运行)
- 图像小波变换MatLab源代码
- LU分解的MATLAB实现
- 冈萨雷斯数字图像处理matlab版(第三
- 替代数据法的matlab程序
- 用matlab实现的多站定位系统性能仿真
评论
共有 条评论