资源简介
编写matlab程序进行鱼的分类和识别,对相应数据集进行训练达到很高的准确率
代码片段和文件信息
function [ BGOT ] = interface_trainBGOTFromImage_update( features class_id )
%
%
% Usage syntax:
% [ model_data ] = interface_trainBGOTFromImage( rgbImg binImg class_id )
%
% Inputs:
%
% “features“ is the input features of fish.
%
% “class_id“ is the class label.
%
% Outputs:
%
% “model_data“ is the BGOT model; it is a pre-trained hierarchical
% classification tree.
% Written by:
% Phoenix X. Huang
% University of Edinburgh
% U.K.
%
% Email: Xuan.Huang@ed.ac.uk
%
% 2011 2012 2013
%
% -----------------------------------------------------------------------
% Copyright (2013): Phoenix X. Huang
%
% This software is distributed under the terms
% of the GNU General Public License 2.0.
%
% Permission to use copy and distribute this software for
% any purpose without fee is hereby granted provided that this entire
% notice is included in all copies of any software which is or includes
% a copy or modification of this software and in all copies of the
% supporting documentation for such software.
% This software is being provided “as is“ without any express or
% implied warranty. In particular the authors do not make any
% representation or warranty of any kind concerning the merchantability
% of this software or its fitness for any particular purpose.“
% ----------------------------------------------------------------------
%
%set default parameters
[samples dimens] = size(features);
featurei = 1:dimens; %feature id
traj = 1:samples; %trajectory id
fold=5; %5 fold cross validation
classifier=2; %use 1vs1 classifier
traj_vote=0; %not use trajectory voting
class_set=unique(class_id); %input class set
node_id = 1; %root node
%train binary split tree (BGOT without feature selection)
[ hier ] = append_constructRecursiveNode( features featurei class_id traj‘ fold classifier traj_vote class_set node_id);
hier.b_isTree = 1;
hier.node_classSet = class_set;
%an example of using forward sequential feature selection to select feature
%subset for BGOT. Note: if this function does not work for you you may try
%to do feature selection first and assign Subfeature by using
%append_hier_assignFSSubset.
%
%append_hierFeatureSelection = feature selection + append_hier_assignFSSubset
[ BGOT ] = append_hierFeatureSelection( hier features featurei class_id traj‘ ‘.‘);
%set Root Subfeature field for node rejection
[featureSubset scoreResult] = classify_featureselection_fw(features featurei class_id traj‘ length(unique(featurei)) 3 fold classifier ‘fs_root‘);
[mv mi] = max(scoreResult(: standard));
BGOT.Root.Subfeature = featureSubset(1:mi);
%use cross validation for evaluation
%[ result] = classify_crossValidation(features featurei class_id traj‘ fold classifier 0 BGOT 1);
end
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2018-03-05 15:48 fishRecognition\
文件 2816 2018-03-05 15:25 fishRecognition\README
文件 493449 2013-10-15 01:06 fishRecognition\features.mat
目录 0 2018-03-05 15:48 fishRecognition\fish_recog\
文件 468 2013-10-06 22:44 fishRecognition\fish_recog\CheckData.m
文件 1910 2013-10-06 22:44 fishRecognition\fish_recog\GrabCut.m
文件 14299 2013-10-06 22:44 fishRecognition\fish_recog\GraphCut.m
文件 119633 2013-10-06 22:44 fishRecognition\fish_recog\GraphCutConstr.mexglx
文件 127351 2013-10-06 22:44 fishRecognition\fish_recog\GraphCutMex.mexglx
文件 1192 2013-10-06 22:44 fishRecognition\fish_recog\LocalColorModel.m
文件 3233 2013-10-06 22:44 fishRecognition\fish_recog\RecognizeFish.m
文件 170 2013-10-06 22:44 fishRecognition\fish_recog\SmoothnessTerm.m
文件 178236 2013-10-06 22:44 fishRecognition\fish_recog\a_history.m
文件 285 2013-10-06 22:44 fishRecognition\fish_recog\append_CalculateSim_byResult.m
文件 509 2013-10-06 22:44 fishRecognition\fish_recog\append_acceptImage.m
文件 625 2013-10-06 22:44 fishRecognition\fish_recog\append_addSpeciesSubfeature.m
文件 2073 2013-10-06 22:44 fishRecognition\fish_recog\append_ami_afinv.txt
文件 983 2013-10-06 22:44 fishRecognition\fish_recog\append_ami_cafmi.m
文件 493 2013-10-06 22:44 fishRecognition\fish_recog\append_ami_cm.m
文件 374 2013-10-06 22:44 fishRecognition\fish_recog\append_ami_readinv.m
文件 633 2013-10-06 22:44 fishRecognition\fish_recog\append_cleanBinaryImage.m
文件 249 2013-10-06 22:44 fishRecognition\fish_recog\append_compareChisquare.m
文件 449 2013-10-06 22:44 fishRecognition\fish_recog\append_complexmoment.m
文件 2175 2013-10-15 02:48 fishRecognition\fish_recog\append_constructRecursiveNode.m
文件 2288 2013-10-06 22:44 fishRecognition\fish_recog\append_constructRecursiveNode_parfor.m
文件 1241 2013-10-06 22:44 fishRecognition\fish_recog\append_construct_hier.m
文件 673 2013-10-06 22:44 fishRecognition\fish_recog\append_convertScore_allNodes_15.m
文件 147 2013-10-06 22:44 fishRecognition\fish_recog\append_convertlabel.m
文件 304 2013-10-06 22:44 fishRecognition\fish_recog\append_convertscore.m
文件 1814 2013-10-06 22:44 fishRecognition\fish_recog\append_createTreeFromTable.m
文件 843 2013-10-06 22:44 fishRecognition\fish_recog\append_createZeroMeanUnitVarianceImage.m
............此处省略155个文件信息
相关资源
- 滑模变结构控制matlab仿真 第三版,基
- 电磁场与波 电磁材料及MATLAB计算
- MATLAB小波分析与应用30个案例分析
-
Matlab_Simuli
nk详解_周俊杰_著 - 《模式识别与智能计算的MATLAB实现》
- MATLABR2016a在电子信息工程中的仿真案
- 信号的时频域分析实验MATLAB
- 计算离散随机变量的熵、联合熵、条
- 部分主元法的LU分解
- MATLAB——二维小波分析进行图像压缩
- LMS自适应滤波器MATLAB实现
- 基于Matlab的扩频通信仿真
- 现代永磁同步电机控制原理及MATLAB仿
-
免费详解MATLAB/SIMUli
nk 通信系统建 - MSER matlab代码
- MATLAB小波分析第二版张德丰等编著
- 数字图像处理Matlab版原书pdf M代码 图
- Matlab代码-MSER最大极值稳定区域
- Boyd凸优化资料含中英文课本教材、习
- RBF神经网络自适应控制MATLAB仿真_刘金
- MATLAB图像与视频处理实用案例详解 完
- 完整版-数字滤波器的MATLAB与FPGA实现第
- MATLAB智能优化算法PDF及程序
-
MATLAB Simuli
nk系统仿真超级学习手册 - MATLAB R2016a完全自学一本通PDF+源码 带
- 语音信号处理(赵力)Matlab代码、书
- 《MATLAB图像处理详解》完整版书籍(
-
Simuli
nk仿真及代码生成技术入门到精 - MATLAB R2018a
- matlab实现回归分析代码
评论
共有 条评论