资源简介
LTE资源分配,小区间干扰协调的Matlab源码,使用了SCME信道模型,利用此模型建立LTE资源分配的仿真环境,是项目中写出来的代码,很值得一看,参考
代码片段和文件信息
function antpar=antparset(varargin)
%ANTPARSET Antenna parameter configuration for SCM
% ANTPAR=ANTPARSET sets default parameters for the input struct ANTPAR.
%
% Default parameters are [ {default} ]:
%
% BsGainPattern - complex BS array element field patterns [ {1} | 4D-array]
% BsGainAnglesAz - azimuth angles (degrees) for BsGainPattern [ {linspace(-18018090)} ]
% BsGainAnglesEl - elevation angles (not used currently)
% BsElementPosition - element spacing for BS linear array in wavelenghts [ {0.5} ]
% MsGainPattern - complex MS array element field patterns [ {1} | 4D-array]
% MsGainAnglesAz - azimuth angles (degrees) for MsGainPattern [ {linspace(-18018090)} ]
% MsGainAnglesEl - elevation angles (not used currently)
% MsElementPosition - element spacing for MS linear array in wavelenghts [ {0.5} ]
% InterpFunction - name of the interpolation function [{‘interp_gain‘}]
% InterpMethod - interpolation method used [{‘cubic‘}]
%
% Some notes about the antenna parameters:
%
% - The complex field patterns are given in linear scale. The antenna gain
% is 20*log10(abs(BsGainPattern)).
% - Field patterns should be defined over the full 360 degree azimuth
% angle. Unless BsGainPattern is a scalar (see below) the intermediate
% values will be interpolated.
% - Only linear arrays are supported currently. The element spacings can
% be given (in wavelengths) in the vectors BsElementPosition and
% MsElementPosition. When a scalar is given (default) uniform spacing
% is assumed.
% - If BsGainPattern and/or MsGainPattern field is a scalar the antenna
% field pattern is assumed constant (equal to the scalar) over the whole
% azimuth angle. For example setting BsGainPattern=SQRT(1.64) (2.15 dB)
% would correspond to a BS dipole array with NumBsElements (see below).
% - When BsGainPattern (MsGainPattern) is a scalar the number of the
% BS (MS) antenna elements is determined from parameters NumBsElements
% (NumMsElements) in the input struct SCMPAR (see SCMPARSET). Otherwise
% the number of elements in the link end is deduced from the dimensions
% of the 4D-array BsGainPattern (MsGainPattern).
% - If BsGainPattern (MsGainPattern) is not a scalar it must be a complex
% 4D-array with dimensions NUM_ELxPOLxELxAZ where NUM_EL is the
% number of array elements POL is 1 or 2 EL is arbitrary and AZ
% is LENGTH(BsGainAnglesAz). If ‘polarized‘ option is used the
% (:11:)th dimension is assumed the vertical polarization and (:21:)
% is assumed the horizontal polarization. Otherwise only the (:11:)th
% dimensions are used. The size of the third dimension is unimportant
% as elevation is not used in the current implementation.
% - SIZE(BsGainPattern4) must equal LENGTH(BsAnglesAz). In other words
% all element patterns ar
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 531 2009-10-11 16:19 SCME version3\antpar.mat
文件 4854 2004-12-07 21:19 SCME version3\antparset.m
文件 265 2009-10-11 16:19 SCME version3\ba
文件 1137 2009-10-09 21:36 SCME version3\ba
文件 2015 2006-08-30 19:49 SCME version3\cas.m
文件 11755 2009-12-05 10:02 SCME version3\ceu0.mat
文件 11755 2009-12-05 10:02 SCME version3\ceu1.mat
文件 11755 2009-12-05 10:02 SCME version3\ceu2.mat
文件 321 2009-10-30 10:41 SCME version3\change.asv
文件 288 2009-11-30 12:45 SCME version3\change.m
文件 1087 2005-05-20 17:43 SCME version3\Contents.m
文件 513 2009-09-28 11:52 SCME version3\data.mat
文件 11755 2009-12-05 10:02 SCME version3\delay0.mat
文件 11755 2009-12-05 10:02 SCME version3\delay1.mat
文件 11755 2009-12-05 10:02 SCME version3\delay2.mat
文件 2339 2009-09-03 16:05 SCME version3\dipole.asv
文件 2349 2004-09-01 11:10 SCME version3\dipole.m
文件 763 2009-10-29 14:19 SCME version3\dist.asv
文件 794 2009-10-29 14:20 SCME version3\dist.m
文件 1066 2009-10-09 21:21 SCME version3\distrnd.m
文件 408 2009-09-15 20:08 SCME version3\diversity.m
文件 1573 2006-08-30 19:49 SCME version3\ds.m
文件 47263 2005-05-30 16:14 SCME version3\generate_bulk_par.m
文件 185 2009-10-11 16:19 SCME version3\index_channel.mat
文件 2978 2004-12-07 21:18 SCME version3\interp_gain.m
文件 4609 2004-12-07 21:18 SCME version3\interp_gain_c.m
文件 4284 2004-07-26 10:22 SCME version3\interp_gain_mex.c
文件 1195 2009-10-15 19:32 SCME version3\li
文件 3946 2009-10-09 20:53 SCME version3\li
文件 3906 2009-10-09 21:22 SCME version3\li
............此处省略416个文件信息
相关资源
- 自适应局部迭代滤波(Adaptive local i
- Kalman Filtering - Theory and Practice Using M
- 完整LTE下MIMO OFDM仿真
- retinex by bilateral filter
- 《全面详解LTE MATLAB建模、仿真与实现
- LTE HARQ MATLAB仿真程序
- Altera dsp builder 13.1 破解文件
- 信号处理滤波器设计-基于MATLAB和Mat
- 全面详解LTE:MATLAB建模、仿真与实现
- 粒子滤波matlab实现三套
- 数字滤波器的MATLAB与FPGA实现(第二版
- 数字滤波器的MATLAB与FPGA实现——Alt
- 数字通信同步技术的MATLAB与FPGA实现—
- 数字滤波器的MATLAB与FPGA实现第二版—
- 全面详解LTE:MATLAB建模、仿真与实现
- [数字滤波器的MATLAB与FPGA实现——Al
- 数字滤波器的MATLAB与FPGA实现:ALTERA
- 数字调制解调技术的MATLAB与FPGA实现
- 全面详解LTE:MATLAB建模、仿真与实现
- 数字通信同步技术的MATLAB与FPGA实现—
- 全面详解LTE MATLAB建模、仿真与实现
- 数字调制解调技术的MATLAB与FPGA实现—
- 数字调制解调技术的MATLAB与FPGA实现—
- 数字调制解调技术的MATLAB与FPGA实现
- 数字滤波器的MATLAB与FPGA实现:Altrra
- 维也纳大学LTE的系统仿真代码
- 维也纳LTE系统级仿真平台LTE_System_Le
- 全面详解LTE:MATLAB建模、仿真与实现
- 数字滤波器的MATLAB与FPGA实现第2版——
- 数字滤波器的MATLAB与FPGA实现:ALTERA
评论
共有 条评论