资源简介
一个功能强大,为解决各种稀疏估计问题的开源优化工具箱
代码片段和文件信息
clear all;
get_architecture;
%%%%%%%%%%%%% COMPILER CONFIGURATION %%%%%%%%%%%%%%%%
% set up the compiler you want to use. Possible choices are
% - ‘mex‘ (default matlab compiler) this is the easy choice if your matlab
% is correctly configured. Note that this choice might not compatible
% with the option ‘use_multithread=true‘.
% - ‘icc‘ (intel compiler) usually produces the fastest code but the
% compiler is not free and not installed by default.
% - ‘gcc‘ (gnu compiler) good choice (for Mac use gcc >= 4.6 for
% the multi-threaded version otherwise set use_multithread=false).
% For windows you need to have cygwin installed.
% - ‘clang‘
% - ‘open64‘ (amd compiler) optimized for opteron cpus.
% - ‘vs‘ (visual studio compiler) for windows computers (10.0 or more is recommended)
% for some unknown reason the performance obtained with vs is poor compared to icc/gcc
compiler=‘gcc‘;
%%%%%%%%%%%% BLAS/LAPACK CONFIGURATION %%%%%%%%%%%%%%
% set up the blas/lapack library you want to use. Possible choices are
% - builtin: blas/lapack shipped with Matlab
% same as mex: good choice if matlab is correctly configured.
% - mkl: (intel math kernel library) usually the fastest but not free.
% - acml: (AMD Core math library) optimized for opteron cpus
% - blas: (netlib version of blas/lapack) free
% - atlas: (atlas version of blas/lapack) free
% ==> you can also tweak this script to include your favorite blas/lapack library
blas=‘builtin‘;
%%%%%%%%%%%% MULTITHREADING CONFIGURATION %%%%%%%%%%%%%%
% set true if you want to use multi-threaded capabilities of the toolbox. You
% need an appropriate compiler for that (intel compiler most recent gcc or visual studio pro)
use_multithread=true; % (might not compatible with compiler=mex)
% if the compilation fails on Mac try the single-threaded version.
% to run the toolbox on a cluster it can be a good idea to deactivate this
use_64bits_integers=true;
% use this option if you have VERY large arrays/matrices
% this option allows such matrices but may slightly reduce the speed of the computations.
use_mkl_threads=false;
% use this option is you use the mkl library and intends to use intensively BLAS3/lapack routines
% (for multiclass logistic regression regularization with the trace norm for instance)
% this results in a loss of performance for many other functions
% if you use the options ‘mex‘ and ‘builtin‘ you can proceed with the compilation by
% typing ‘compile‘ in the matlab shell. Otherwise you need to set up a few path below.
path_matlab=‘‘;
%path_matlab=‘/softs/bin/‘;
%%%%%%%%%%%% PATH CONFIGURATION %%%%%%%%%%%%%%%%%%%%
% only if you do not use the options ‘mex‘ and ‘builtin‘
% set up the path to the compiler libraries that you intend to use below
add_flag=‘‘;
if strcmp(compiler‘gcc‘)
if linux || mac
% example when compiler=‘gcc‘ for Linux/Mac: (path containing the files l
相关资源
- 基于matlab的图像处理源程序
- 冈萨雷斯数字图像处理matlab版(第三
- 基于matlab 的图像处理100实例
- 8领域边界跟踪 图像处理 matlab
- matlab-图像处理算法
- p文件,MATLAB的
- 数字图像处理radon matlab变换算法代码
- 图像降噪Matlab代码
- 传统关联成像、计算鬼成像matlab
- MATLAB7.x图像处理
- 基于matlab的车牌识别系统论文
- matlab2019运动目标检测--数字图像处理
- 计算图像Spatial Frequence的Matlab程序SF
- 尾灯识别matlab代码
- MATLAB大脑腔体图像分割
- 基于MATLAB人民币识别系统.zip
- 数字图像处理作业canny边缘检测坎尼边
- 数字图像处理 MATLAB 大作业 代码及其
- 遥感影像融合_数字图像处理的matlab程
- MATLAB图像与视频处理实用案例详解代
- MATLAB 图像处理识别程序
- 数字图像处理使用matlab进行采样量化
- 傅里叶变化频谱图及频域滤波
- MATLAB实现k-svd和mod信号处理
- 图像处理---matlab
- Matlab在图像处理与目标识别方面的应
- matlab数字图像处理之几何变换将图像
- matlab数字图像处理之图像几何变换
- 图像超分辨重建MATLAB源代码迭代步长
- mri去偏场代码
评论
共有 条评论