资源简介
稀疏表示中用来训练字典的ksvd算法,有demo

代码片段和文件信息
% KSVD running file
% in this file a synthetic test of the K-SVD algorithm is performed. First
% a random dictionary with normalized columns is being generated and then
% a set of data signals each as a linear combination of 3 dictionary
% element is created with noise level of 20SNR. this set is given as input
% to the K-SVD algorithm.
% a different mode for activating the K-SVD algorithm is until a fixed
% error is reached in the Sparse coding stage instead until a fixed number of coefficients is found
% (it was used by us for the
% denoising experiments). in order to switch between those two modes just
% change the param.errorFlag (0 - for fixed number of coefficients 1 -
% until a certain error is reached).
param.L = 3; % number of elements in each linear combination.
param.K = 50; % number of dictionary elements
param.numIteration = 50; % number of iteration to execute the K-SVD algorithm.
param.errorFlag = 0; % decompose signals until a certain error is reached. do not use fix number of coefficients.
%param.errorGoal = sigma;
param.preserveDCAtom = 0;
%%%%%%% creating the data to train on %%%%%%%%
N = 1500; % number of signals to generate
n = 20; % dimension of each data
SNRdB = 20; % level of noise to be added
[param.TrueDictionary D x] = gererateSyntheticDictionaryAndData(N param.L n param.K SNRdB);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% initial dictionary: Dictionary elements %%%%%%%%
param.InitializationMethod = ‘DataElements‘;
param.displayProgress = 1;
disp(‘Starting to train the dictionary‘);
[Dictionaryoutput] = KSVD(Dparam);
disp([‘The KSVD algorithm retrived ‘num2str(output.ratio(end))‘ atoms from the original dictionary‘]);
[Dictionaryoutput] = MOD(Dparam);
disp([‘The MOD algorithm retrived ‘num2str(output.ratio(end))‘ atoms from the original dictionary‘]);
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 185727 2005-09-11 15:43 KSVD_Matlab_ToolBox\barbara.png
文件 177762 2005-09-11 15:44 KSVD_Matlab_ToolBox\boat.png
文件 1907 2009-09-03 10:54 KSVD_Matlab_ToolBox\demo1.m
文件 3561 2006-12-12 09:13 KSVD_Matlab_ToolBox\demo2.m
文件 8504 2006-12-28 13:57 KSVD_Matlab_ToolBox\demo3.m
文件 5426 2007-01-24 07:53 KSVD_Matlab_ToolBox\denoiseImageDCT.m
文件 6046 2006-12-12 09:18 KSVD_Matlab_ToolBox\denoiseImageGlobal.m
文件 9088 2007-01-24 07:53 KSVD_Matlab_ToolBox\denoiseImageKSVD.m
文件 3246 2007-01-25 08:39 KSVD_Matlab_ToolBox\displayDictionaryElementsAsImage.asv
文件 3224 2007-01-25 08:39 KSVD_Matlab_ToolBox\displayDictionaryElementsAsImage.m
文件 1896 2006-12-11 14:25 KSVD_Matlab_ToolBox\gererateSyntheticDictionaryAndData.m
文件 5749450 2005-09-21 08:35 KSVD_Matlab_ToolBox\globalTrainedDictionary.mat
文件 34985 2005-09-11 15:44 KSVD_Matlab_ToolBox\house.png
文件 12292 2009-09-03 10:54 KSVD_Matlab_ToolBox\KSVD.m
文件 11585 2006-12-28 14:02 KSVD_Matlab_ToolBox\KSVD_NN.m
文件 151199 2005-09-11 15:44 KSVD_Matlab_ToolBox\lena.png
文件 8053 2006-12-12 08:35 KSVD_Matlab_ToolBox\MOD.m
文件 631 2006-12-11 09:56 KSVD_Matlab_ToolBox\my_im2col.m
文件 1105 2006-12-24 16:00 KSVD_Matlab_ToolBox\NN_BP.m
文件 954 2007-04-29 10:17 KSVD_Matlab_ToolBox\OMP.m
文件 1083 2006-12-11 15:08 KSVD_Matlab_ToolBox\OMPerr.m
文件 40181 2002-08-29 17:48 KSVD_Matlab_ToolBox\peppers256.png
文件 4802 2006-12-28 14:11 KSVD_Matlab_ToolBox\README.txt
目录 0 2010-09-30 21:34 KSVD_Matlab_ToolBox
----------- --------- ---------- ----- ----
6422707 24
相关资源
- matlab_OFDM调制解调(来自剑桥大学)
- Matlab路面裂缝识别69319
- 高灵敏度GPS接收机MATLAB仿真,附捕获
- 基于MATLAB的质点弹道计算与外弹道优
- 阵列天线的matlab仿真
- MATLAB 经典程序源代码大全
- MATLAB小波软阈值去噪代码33473
- 天线阵的波束形成在MATLAB仿真程序及
- 非线性SVM算法-matlab实现
- 《MATLAB 智能算法超级学习手册》-程序
- 组合导航matlab程序
- 读取txt文件内容matlab代码实现
- Matlab实现基于相关的模板匹配程序
- matlab优化工具箱讲解
- 基于MATLAB的快速傅里叶变换
- 光纤传输中的分布傅立叶算法matlab实
- 基于matlab的图像处理源程序
- matlab 椭圆拟合程序
- 算术编码解码matlab源代码
- optical_flow 光流法 matlab 实现程序
- 引导图像滤波器 Matlab实现
- 分形几何中一些经典图形的Matlab画法
- OFDM系统MATLAB仿真代码
- SVM工具箱(matlab中运行)
- 图像小波变换MatLab源代码
- LU分解的MATLAB实现
- 冈萨雷斯数字图像处理matlab版(第三
- 替代数据法的matlab程序
- 用matlab实现的多站定位系统性能仿真
- 通过不同方法进行粗糙集属性约简m
评论
共有 条评论