• 大小: 509.78 KB
    文件类型: .rar
    金币: 2
    下载: 0 次
    发布日期: 2024-08-27
  • 语言: Matlab
  • 标签: kalman  matlab  

资源简介

kalman工具箱 装在matlab目录下可直接运行 对于学习目标跟踪很有用

资源截图

代码片段和文件信息

function [FHQRinitx initV] = AR_to_SS(coef C y)
%
% Convert a vector auto-regressive model of order k to state-space form.
% [FHQR] = AR_to_SS(coef C y)

% X(i) = A(1) X(i-1) + ... + A(k) X(i-k+1) + v where v ~ N(0 C)
% and A(i) = coef(::i) is the weight matrix for i steps ago.
% We initialize the state vector with [y(:k)‘ ... y(:1)‘]‘ since
% the state vector stores [X(i) ... X(i-k+1)]‘ in order.

[s s2 k] = size(coef); % s is the size of the state vector
bs = s * ones(1k); % size of each block

F = zeros(s*k);
for i=1:k
   F(block(1bs) block(ibs)) = coef(::i);
end
for i=1:k-1
  F(block(i+1bs) block(ibs)) = eye(s);
end

H = zeros(1*s k*s);
% we get to see the most recent component of the state vector 
H(block(1bs) block(1bs)) = eye(s); 
%for i=1:k
%  H(block(1bs) block(ibs)) = eye(s);
%end

Q = zeros(k*s);
Q(block(1bs) block(1bs)) = C;

R = zeros(s);

initx = zeros(k*s 1);
for i=1:k
  initx(block(ibs)) = y(: k-i+1); % concatenate the first k observation vectors
end

initV = zeros(k*s); % no uncertainty about the state (since perfectly observable)

 属性            大小     日期    时间   名称
----------- ---------  ---------- -----  ----

     文件        117  2009-03-26 16:53  KalmanAll\Kalman\aaa.asv

     文件       1107  2002-05-29 08:59  KalmanAll\Kalman\AR_to_SS.m

     文件        425  2002-05-29 08:59  KalmanAll\Kalman\convert_to_lagged_form.m

     文件        354  2002-05-29 08:59  KalmanAll\Kalman\ensure_AR.m

     文件       1045  2002-05-29 08:59  KalmanAll\Kalman\eval_AR_perf.m

     文件       3005  2009-03-26 16:53  KalmanAll\Kalman\kalman_filter.asv

     文件       3007  2009-03-26 20:29  KalmanAll\Kalman\kalman_filter.m

     文件       2392  2002-11-01 16:32  KalmanAll\Kalman\kalman_forward_backward.m

     文件       1584  2002-05-29 08:59  KalmanAll\Kalman\kalman_smoother.m

     文件       1872  2009-03-26 20:23  KalmanAll\Kalman\kalman_update.asv

     文件       1876  2009-03-26 20:24  KalmanAll\Kalman\kalman_update.m

     文件       1022  2002-10-23 08:17  KalmanAll\Kalman\learning_demo.m

     文件        819  2002-05-29 08:59  KalmanAll\Kalman\learn_AR.m

     文件        687  2002-05-29 08:59  KalmanAll\Kalman\learn_AR_diagonal.m

     文件       5515  2006-08-24 14:37  KalmanAll\Kalman\learn_kalman.m

     文件        485  2004-06-07 07:39  KalmanAll\Kalman\README.txt

     文件        535  2003-01-18 13:47  KalmanAll\Kalman\README.txt~

     文件       2039  2009-03-27 11:51  KalmanAll\Kalman\sample_lds.asv

     文件       2039  2009-03-27 11:53  KalmanAll\Kalman\sample_lds.m

     文件       1199  2002-05-29 08:59  KalmanAll\Kalman\smooth_update.m

     文件        579  2002-05-29 08:59  KalmanAll\Kalman\SS_to_AR.m

     文件         28  2009-03-27 11:30  KalmanAll\Kalman\testKalman.m

     文件       1976  2009-03-25 17:51  KalmanAll\Kalman\tracking_demo.asv

     文件       2010  2009-03-30 16:21  KalmanAll\Kalman\tracking_demo.m

     文件        267  2005-05-03 13:08  KalmanAll\KPMstats\#histCmpChi2.m#

     文件       1955  2005-04-25 19:29  KalmanAll\KPMstats\beta_sample.m

     文件        199  2005-04-25 19:29  KalmanAll\KPMstats\chisquared_histo.m

     文件       1326  2005-04-25 19:29  KalmanAll\KPMstats\chisquared_prob.m

     文件       1389  2005-04-25 19:29  KalmanAll\KPMstats\chisquared_readme.txt

     文件       2127  2005-04-25 19:29  KalmanAll\KPMstats\chisquared_table.m

............此处省略577个文件信息

评论

共有 条评论