资源简介
斯坦福深度学习教程中关于stacked autoencoder的练习代码,源代码中需要补全的地方,全部把代码补完整,把手写体识别的数据库放到路径下,可以直接运行
代码片段和文件信息
function [] = checkStackedAECost()
% Check the gradients for the stacked autoencoder
%
% In general we recommend that the creation of such files for checking
% gradients when you write new cost functions.
%
%% Setup random data / small model
inputSize = 4;
hiddenSize = 5;
lambda = 0.01;
data = randn(inputSize 5);
labels = [ 1 2 1 2 1 ];
numClasses = 2;
stack = cell(21);
stack{1}.w = 0.1 * randn(3 inputSize);
stack{1}.b = zeros(3 1);
stack{2}.w = 0.1 * randn(hiddenSize 3);
stack{2}.b = zeros(hiddenSize 1);
softmaxTheta = 0.005 * randn(hiddenSize * numClasses 1);
[stackparams netconfig] = stack2params(stack);
stackedAETheta = [ softmaxTheta ; stackparams ];
[cost grad] = stackedAECost(stackedAETheta inputSize hiddenSize ...
numClasses netcon
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
....... 1695 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\checkStackedAECost.m
....... 1531 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\computeNumericalGradient.m
....... 1322 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\feedForwardAutoencoder.m
....... 622 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\initializeParameters.m
....... 811 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\loadMNISTImages.m
....... 516 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\loadMNISTLabels.m
....... 3143 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\ArmijoBacktrack.m
....... 807 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\autoGrad.m
....... 901 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\autoHess.m
....... 307 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\autoHv.m
....... 870 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\autoTensor.m
....... 374 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\callOutput.m
....... 1763 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\conjGrad.m
....... 953 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\dampedUpdate.m
....... 2421 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\example_minFunc.m
....... 1556 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\example_minFunc_LR.m
....... 106 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\isLegal.m
....... 885 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\lbfgs.m
....... 2293 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\lbfgsC.c
....... 7707 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\lbfgsC.mexa64
....... 7733 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\lbfgsC.mexglx
....... 9500 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\lbfgsC.mexmac
....... 12660 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\lbfgsC.mexmaci
....... 8800 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\lbfgsC.mexmaci64
....... 7168 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\lbfgsC.mexw32
....... 9728 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\lbfgsC.mexw64
....... 594 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\lbfgsUpdate.m
....... 397 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\logistic\LogisticDiagPrecond.m
....... 208 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\logistic\LogisticHv.m
....... 625 2013-04-09 11:03 Exercise7 Implement deep networks for digit classification\minFunc\logistic\LogisticLoss.m
............此处省略38个文件信息
- 上一篇:ICP 点云数据的配准算法
- 下一篇:VSR_SVPWM 三电平调制
相关资源
- HMMforspeechrecogntion 一个可执行的HMM语音
- Gabor Gabor小波变换的matlab实现
- barcode 基于图像的条形码识别程序(识
- adaboost 基于adaboost的人脸识别程序
- chepai 车牌识别系统
- PCALDA PCA+LDA经典人脸识别算法
- DoGfilters DOG高斯差分实现物体识别中的
- zifushibie 用MATLAB实现的字符识别
- pca_knn 本方法采用pca进行特征提取
- yudong 运动目标识别
- MotionDetection 静止背景下运动目标检测
- Gaborpca Gabor小波变换与PCA的人脸识别代
- face 收集的最全的人脸识别代码 有小
- chepaishibie 一个车牌识别的小程序
- PCA-SVM
- licenceplatecharacterrecognitionprogram 能完成
- renyan
- zimushibie 图片 26个字母识别 用matla
- SRC
- Matlab 说话人识别和确认系统
- TheResearchofOff-linehandwrittenChinesecharact
- hao 调制识别全过程
- BP_Neural_Netwok-Recognition_License_Plate(M
- 47457821nicecaridentity 一个很好的车牌识
- presentation 车牌识别的全套MATLAB算法
- PCA_LDA_Face_Verification PCA+LDA人脸识别
- itd ITD模态参数识别的matlab源程序
- yuanchuang1 车牌识别的一个完整程序
- yigechepaishibiedechengxu 车牌识别
- GMM GMM的说话人识别系统
评论
共有 条评论