资源简介
支持向量机混合高斯与sigmoid核函数
代码片段和文件信息
function [svm_struct svIndex] = svmtrain_lm(training groupnames varargin)
%SVMTRAIN trains a support vector machine classifier
%
% SVMStruct = SVMTRAIN(TRAININGGROUP) trains a support vector machine
% classifier using data TRAINING taken from two groups given by GROUP.
% SVMStruct contains information about the trained classifier including
% the support vectors that is used by SVMCLASSIFY for classification.
% GROUP is a column vector of values of the same length as TRAINING that
% defines two groups. Each element of GROUP specifies the group the
% corresponding row of TRAINING belongs to. GROUP can be a numeric
% vector a string array or a cell array of strings. SVMTRAIN treats
% NaNs or empty strings in GROUP as missing values and ignores the
% corresponding rows of TRAINING.
%
% SVMTRAIN(...‘KERNEL_FUNCTION‘KFUN) allows you to specify the kernel
% function KFUN used to map the training data into kernel space. The
% default kernel function is the dot product. KFUN can be one of the
% following strings or a function handle:
%
% ‘linear‘ Linear kernel or dot product
% ‘quadratic‘ Quadratic kernel
% ‘polynomial‘ Polynomial kernel (default order 3)
% ‘rbf‘ Gaussian Radial Basis Function kernel
% ‘mlp‘ Multilayer Perceptron kernel (default scale 1)
% ‘mix‘ mlp+rbf
% function A kernel function specified using @
% for example @KFUN or an anonymous function
%
% A kernel function must be of the form
%
% function K = KFUN(U V)
%
% The returned value K is a matrix of size M-by-N where U and V have M
% and N rows respectively. If KFUN is parameterized you can use
% anonymous functions to capture the problem-dependent parameters. For
% example suppose that your kernel function is
%
% function k = kfun(uvp1p2)
% k = tanh(p1*(u*v‘)+p2);
%
% You can set values for p1 and p2 and then use an anonymous function:
% @(uv) kfun(uvp1p2).
%
% SVMTRAIN(...‘RBF_SIGMA‘SIGMA) allows you to specify the scaling
% factor sigma in the radial basis function kernel.
%
% SVMTRAIN(...‘POLYORDER‘ORDER) allows you to specify the order of a
% polynomial kernel. The default order is 3.
%
% SVMTRAIN(...‘MLP_PARAMS‘[P1 P2]) allows you to specify the
% parameters of the Multilayer Perceptron (mlp) kernel. The mlp kernel
% requires two parameters P1 and P2 where K = tanh(P1*U*V‘ + P2) and P1
% > 0 and P2 < 0. Default values are P1 = 1 and P2 = -1.
%
% SVMTRAIN(...‘METHOD‘METHOD) allows you to specify the method used
% to find the separating hyperplane. Options are
%
% ‘QP‘ Use quadratic programming (requires the Optimization Toolbox)
% ‘SMO‘ Use Sequential Minimal Optimization method
% ‘LS‘ Use least-squares method
%
% If you have the Optimization Toolbox then the QP method is the defau
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 22907 2013-07-31 11:35 svmtrain_lm.m
评论
共有 条评论