资源简介
高斯粒子滤波算法详解及举例,模式转移矩阵计算,采样算法等,注释清晰
代码片段和文件信息
% ------------------------------------------------------------------------------%
% This is code for a computational experiment that compares the performance %
% of a regular Particle Filter(PF) a Gaussian Particle Filter(GPF) %
% and a Gaussian Particle Filter that samples directly from the posterior(GPF2) %
% ------------------------------------------------------------------------------%
% For more details on GPF and GPF2 see %
% [Frank Hutter and Richard Dearden Efficient On-Line Fault Diagnosis for %
% Non-Linear Systems in “Proceedings of The 11th International Conference on %
% AI Robotics and Automation in Space(i-SAIRAS03)“]. %
% ------------------------------------------------------------------------------%
% Last update : January-08 2003 ( draft version ) %
% AUTHORS: Frank Hutter Richard Dearden %
% ------------------------------------------------------------------------------%
clear all;
echo off;
path(‘./core‘path);
path(‘./algos‘path);
path(‘./general‘path);
% =======================================================================
% CHOOSE THE MODEL YOU WANT TO WORK WITH.
% Make sure not to have more than one of those models in the path !! (restart Matlab)
% =======================================================================
% Model applied for our GPF paper.
path(‘./model_for_gpf_paper‘path);
% For this model of real data only the plot of the discrete modes makes sense.
% For the other plots there‘s no ground truth to compare with so they‘re pointless !
%path(‘./model_for_real_data‘path);
% Linear model we applied for Nando‘s RBPF paper.
%path(‘./linear_model_for_nandos_paper‘path);
% =======================================================================
% INITIALISATION
% =======================================================================
par = initParameters;
% =============================================================================
% READ DATA FROM FILE
% =============================================================================
[Tuxyz] = readData(par);
S=3; % First data point that is to be plotted.
%T = 270-1+S; % Last entry we use from the data set.
% =============================================================================
% THE EXPERIMENT
% =============================================================================
N_min = 1; % Minimal number of particles.
N_max = 128; % Maximal number of particles.
runs = 25; % With each number of particles we do that many runs.
% pf = importdata(‘pf-results.dat‘);
% upf = importdata(‘upf-results.dat‘);
% gpf = importdata(‘gpf-results.dat‘);
% gpf2 = importdata(‘gpf2-results.dat‘);
pf(1) = measurePerformance(‘pfalgo‘
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 3151 2003-02-05 14:21 Gaussian Particle Filter\algos\gpf2algo.m
文件 2275 2003-02-05 14:17 Gaussian Particle Filter\algos\gpfalgo.m
文件 1754 2003-02-05 14:13 Gaussian Particle Filter\algos\pfalgo.m
文件 1345 2003-01-29 12:16 Gaussian Particle Filter\algos\scaledSymmetricSigmaPoints.m
文件 5324 2003-01-29 16:33 Gaussian Particle Filter\algos\ukf.m
文件 3624 2003-02-05 15:42 Gaussian Particle Filter\algos\upfalgo.m
文件 853 2002-08-20 15:25 Gaussian Particle Filter\core\cvecrep.m
文件 1155 2002-08-20 15:25 Gaussian Particle Filter\core\deterministicr.m
文件 1134 2002-08-20 15:25 Gaussian Particle Filter\core\multinomialr.m
文件 1401 2002-08-20 15:25 Gaussian Particle Filter\core\residualr.m
文件 5644 2005-03-26 16:00 Gaussian Particle Filter\demo.m
文件 1736 2003-02-04 22:37 Gaussian Particle Filter\general\measurePerformance.m
文件 7512 2005-03-26 15:31 Gaussian Particle Filter\general\plotNiceFigures.m
文件 716 2005-03-26 15:41 Gaussian Particle Filter\general\readData.m
文件 943 2003-02-05 14:05 Gaussian Particle Filter\general\sample_trajectory.m
文件 2607 2003-02-05 16:45 Gaussian Particle Filter\linear_model_for_nandos_paper\computeModeTransitionMatrix.m
文件 9482 2005-03-26 15:03 Gaussian Particle Filter\linear_model_for_nandos_paper\ffun.m
文件 23960 2005-03-26 15:38 Gaussian Particle Filter\linear_model_for_nandos_paper\gpf-results.dat
文件 23960 2005-03-26 15:38 Gaussian Particle Filter\linear_model_for_nandos_paper\gpf2-results.dat
文件 63 2003-02-03 15:16 Gaussian Particle Filter\linear_model_for_nandos_paper\hfun.m
文件 2192 2005-03-26 15:03 Gaussian Particle Filter\linear_model_for_nandos_paper\initParameters.m
文件 23960 2005-03-26 15:38 Gaussian Particle Filter\linear_model_for_nandos_paper\pf-results.dat
文件 133 2003-02-01 02:43 Gaussian Particle Filter\linear_model_for_nandos_paper\sample_prior_x.m
文件 128 2002-08-29 14:52 Gaussian Particle Filter\linear_model_for_nandos_paper\sample_prior_z.m
文件 225 2003-01-29 16:30 Gaussian Particle Filter\linear_model_for_nandos_paper\sample_x.m
文件 217 2005-03-26 14:12 Gaussian Particle Filter\linear_model_for_nandos_paper\sample_z.m
文件 15500 2005-03-26 15:04 Gaussian Particle Filter\linear_model_for_nandos_paper\trajectory.dat
文件 23960 2005-03-26 15:38 Gaussian Particle Filter\linear_model_for_nandos_paper\upf-results.dat
文件 87 2005-03-26 15:03 Gaussian Particle Filter\linear_model_for_nandos_paper\ut_ffun.m
文件 59 2003-01-19 19:40 Gaussian Particle Filter\linear_model_for_nandos_paper\ut_hfun.m
............此处省略36个文件信息
- 上一篇:男女声识别
- 下一篇:matlab读入IGS文件
相关资源
- GMM 混合高斯背景建模
- GMMP SkinColor
- 三相不平衡配电网的潮流计算
- 产生拉盖尔高斯光束
- SGP
- 仿生图像增强法(image enchance)
- 高斯混合模型(GMM)
- 高斯过程回归算法工具箱
- 高斯核支持向量数据描述(SVDD)方法
- GMM,HMM的语音识别,说话人识别源码
- 高斯过程回归
- matlab仿真qpsk在高斯信道和瑞利衰落信
- 高斯光束传输
- 厄米高斯光束MATLAB仿真代码
- MATLAB 高斯过程回归代码GPR
- MATLAB实现高斯赛德尔迭代法
- 混合高斯背景建模 matlab
- matlab求高斯白噪声的功率谱
- usm锐化高斯滤波matlab
- 高斯变异改进基本萤火虫群优化算法
- 基于高斯扰动的布谷鸟算法优化svr网
- Gaussian-process-regression 高斯过程回归及
- 前景检测程序(Foreground-detection-proc
- matlab生成高斯随机粗糙表面 (Fracta
- 使用 拉盖尔函数、缔合拉盖尔函数画
- 改进的混合高斯背景模型
- 三正弦叠加高斯白噪声信号源进行频
- DoGfilters DOG高斯差分实现物体识别中的
- GMM 本代码建立高斯混合模型(高斯多
- STFT 短时傅里叶变换的一些简单的演示
评论
共有 条评论