-
大小: 8KB文件类型: .rar金币: 1下载: 0 次发布日期: 2021-06-01
- 语言: 其他
- 标签: inceptionv3 googlene classifier tensorflow
资源简介
参照原论文使用tensorflow写的一个inceptionv3网络,后续会更新数据集的使用及训练。
代码片段和文件信息
import tensorflow as tf
import numpy
import tensorflow.contrib.slim as slim
def _variable(name shape):
“““Helper to create a Variable stored on CPU memory.
Args:
name: name of the variable
shape: list of ints
initializer: initializer for Variable
Returns:
Variable Tensor
“““
with tf.device(‘/gpu:0‘):
var = tf.get_variable(name shape)
return var
def conv_layer(inputshapestrideactivation=Truepadding=‘VALID‘name=None):
in_channel=shape[2]
out_channel=shape[3]
k_size=shape[0]
with tf.variable_scope(name) as scope:
kernel=_variable(‘conv_weights‘shape = shape)
conv=tf.nn.conv2d(input = inputfilter = kernelstrides = stridepadding =padding)
biases=_variable(‘biases‘[out_channel])
bias=tf.nn.bias_add(convbiases)
if activation is True:
conv_out=tf.nn.relu(biasname = ‘relu‘)
else:
conv_out=bias
return conv_out
def conv_inception(input shape stride= [1111] activation = True padding = ‘SAME‘ name = None):
in_channel = shape[2]
out_channel = shape[3]
k_size = shape[0]
with tf.variable_scope(name) as scope:
kernel = _variable(‘conv_weights‘ shape = shape)
conv = tf.nn.conv2d(input = input filter = kernel strides = stride padding = padding)
biases = _variable(‘biases‘ [out_channel])
bias = tf.nn.bias_add(conv biases)
if activation is True:
conv_out = tf.nn.relu(bias name = ‘relu‘)
else:
conv_out = bias
return conv_out
def inception_block_tradition(input name=None):
with tf.variable_scope(name) as scope:
with tf.variable_scope(“Branch_0“):
branch_0=conv_inception(inputshape = [1128864]name = ‘0a_1x1‘)
with tf.variable_scope(‘Branch_1‘):
branch_1=conv_inception(inputshape = [1128848]name = ‘0a_1x1‘)
branch_1=conv_inception(branch_1shape = [554864]name = ‘0b_5x5‘)
with tf.variable_scope(“Branch_2“):
branch_2=conv_inception(inputshape = [1128864]name = ‘0a_1x1‘)
branch_2=conv_inception(branch_2shape = [336496]name = ‘0b_3x3‘)
with tf.variable_scope(‘Branch_3‘):
branch_3=tf.nn.avg_pool(inputksize = (1331)strides = [1111]padding = ‘SAME‘name = ‘Avgpool_0a_3x3‘)
branch_3=conv_inception(branch_3shape = [1128864]name = ‘0b_1x1‘)
inception_out=tf.concat([branch_0branch_1branch_2branch_3]3)
b=1 # for debug
return inception_out
def inception_grid_reduction_1(inputname=None):
with tf.variable_scope(name) as scope:
with tf.variable_scope(“Branch_0“):
branch_0=conv_inception(inputshape = [11288384]name = ‘0a_1x1‘)
branch_0=conv_inception(branch_0shape = [33384384]stride = [1221]padding = ‘VALID‘name = ‘0b_3x3‘
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 455 2018-05-04 20:50 Architecture\.idea\Architecture.iml
文件 153 2018-05-04 20:54 Architecture\.idea\codest
文件 198 2018-05-04 20:54 Architecture\.idea\codest
文件 84 2018-05-04 20:54 Architecture\.idea\dictionaries\Yel.xm
文件 185 2018-05-04 20:54 Architecture\.idea\misc.xm
文件 276 2018-05-04 20:50 Architecture\.idea\modules.xm
文件 19246 2018-05-06 21:51 Architecture\.idea\workspace.xm
文件 14810 2018-05-06 11:03 Architecture\inception_v3.py
文件 3783 2018-05-06 15:36 Architecture\training.py
目录 0 2018-05-04 20:54 Architecture\.idea\codest
目录 0 2018-05-04 20:54 Architecture\.idea\dictionaries
目录 0 2018-05-06 21:51 Architecture\.idea
目录 0 2018-05-06 15:36 Architecture
----------- --------- ---------- ----- ----
39190 13
- 上一篇:U-Net:用于生物医学图像分割的卷积网络[译]
- 下一篇:iOS BLE最佳实践
评论
共有 条评论