资源简介
Coursera Machine Learning 第二周编程全套满分题目+注释(包括选做optional)

代码片段和文件信息
function J=cost(Xytheta)
m=size(X1);
pridiction=X*theta;
sqr=(pridiction-y).^2;
J=1/(2*m)*sum(sqr);
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 106 2017-11-23 09:43 cost.m
文件 26 2017-11-26 22:04 read me.txt
文件 670 2017-11-23 17:46 machine-learning-ex1\machine-learning-ex1\ex1\computeCost.m
文件 699 2017-11-24 17:35 machine-learning-ex1\machine-learning-ex1\ex1\computeCostMulti.m
文件 3908 2017-11-23 15:51 machine-learning-ex1\machine-learning-ex1\ex1\ex1.m
文件 1359 2017-03-13 18:40 machine-learning-ex1\machine-learning-ex1\ex1\ex1data1.txt
文件 657 2017-03-13 18:40 machine-learning-ex1\machine-learning-ex1\ex1\ex1data2.txt
文件 4858 2017-11-24 21:39 machine-learning-ex1\machine-learning-ex1\ex1\ex1_multi.m
文件 1356 2017-11-24 17:39 machine-learning-ex1\machine-learning-ex1\ex1\featureNormalize.m
文件 1337 2017-11-23 18:12 machine-learning-ex1\machine-learning-ex1\ex1\gradientDescent.m
文件 1027 2017-11-24 20:46 machine-learning-ex1\machine-learning-ex1\ex1\gradientDescentMulti.m
文件 1624 2017-03-13 18:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\AUTHORS.txt
文件 3862 2017-03-13 18:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\ChangeLog.txt
文件 881 2017-03-13 18:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\jsonopt.m
文件 1551 2017-03-13 18:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\LICENSE_BSD.txt
文件 18732 2017-03-13 18:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\loadjson.m
文件 15574 2017-03-13 18:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\loadubjson.m
文件 771 2017-03-13 18:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\mergestruct.m
文件 19369 2017-03-13 18:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\README.txt
文件 17462 2017-03-13 18:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\savejson.m
文件 16123 2017-03-13 18:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\saveubjson.m
文件 1094 2017-03-13 18:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\jsonlab\varargin2struct.m
文件 1195 2017-03-13 18:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\makeValidFieldName.m
文件 5562 2017-03-13 18:40 machine-learning-ex1\machine-learning-ex1\ex1\lib\submitWithConfiguration.m
文件 668 2017-11-24 21:16 machine-learning-ex1\machine-learning-ex1\ex1\normalEqn.m
文件 982 2017-11-23 15:29 machine-learning-ex1\machine-learning-ex1\ex1\plotData.m
文件 1876 2017-03-13 18:40 machine-learning-ex1\machine-learning-ex1\ex1\submit.m
文件 262 2017-11-24 21:18 machine-learning-ex1\machine-learning-ex1\ex1\token.mat
文件 513 2017-11-23 11:26 machine-learning-ex1\machine-learning-ex1\ex1\warmUpExercise.m
文件 489928 2017-03-13 18:40 machine-learning-ex1\machine-learning-ex1\ex1.pdf
............此处省略9个文件信息
- 上一篇:信息论 香农,费诺,霍夫曼编码
- 下一篇:xm
l编写的图书管理系统
相关资源
- ReportMachine 交叉报表 学生成绩表
- reportmachine帮助电子书
- 机器学习个人笔记完整版v5.2-A4打印版
- TH upstream-inhibited ARHGAP12 subnetwork for
- Bishop - Pattern Recognition And Machine Learn
- [en]深度学习[Deep Learning: Adaptive Compu
- 吴恩达机器学习编程题
- Wikipedia机器学习迷你电子书之四《D
- AV Foundation 开发秘籍 英文版 Learning
- Google论文\“Wide & Deep Learning for Recom
- Learning From Data Yaser S. Abu-Mostafa
- 《增强学习导论》Reinforcement Learning
- titanic_dataset.csv泰坦尼克数据集
- TensorFlow Machine Learning Cookbook+无码高清
- Hands-On Machine Learning with Scikit-Learn an
- Vapnik经典之作The Nature Of Statistical Le
- Learning Generative Adversarial Networks 无水印
- Algorithms for reinforcement learning
- Bioinformatics Algorithms: an Active Learning
- Big Data and Machine Learning in Quantitative
- Learning with Kernels
- master_machine_learning_algorithms285570
- Grokking Deep Learning
- machine-learning-ex4
- Learning Generative Adversarial Networks
- 斯坦福大学 2014 机器学习教程中文笔
- Deep Learning with R.pdf
- Reinforcement Learning: An Introduction,Rich
- 数据不均衡问题经典文献《Learning f
- Neural Networks and DeepLearning - Michael Nie
评论
共有 条评论