资源简介
在国外大学的网页上下载的,mean shift用于分割,分类图像。大家都知道 mean shift算法的应用领域是很广泛的,在跟踪,分割方面效果还是不错的。所以嘛,下载看看喽!

代码片段和文件信息
/////////////////////////////////////////////////////////////////////////////
// Name: fams.cpp
// Purpose: fast adaptive meanshift implementation
// Author: Ilan Shimshoni
// Modified by: Bogdan Georgescu
// Created: 08/14/2003
// Version: v0.1
/////////////////////////////////////////////////////////////////////////////
#include
#include
#include
#include
#include
#include
#include “fams.h“
FAMS::FAMS(int no_lsh)
{
hasPoints_ = 0;
nsel_ = 0;
npm_ = 0;
hashCoeffs_ = NULL;
noLSH_=no_lsh;
time_t tt1;
time(&tt1);
srand((unsigned)tt1);
// srand(100);
nnres1_ = 0;
nnres2_ = 0;
}
FAMS::~FAMS()
{
CleanData();
}
void FAMS::CleanData()
{
CleanPoints();
CleanSelected();
CleanPrunedModes();
CleanHash();
}
void FAMS::CleanPoints()
{
if (hasPoints_)
{
delete [] points_;
delete [] data_;
delete [] rr_;
hasPoints_ = 0;
}
}
void FAMS::CleanSelected()
{
if (nsel_ > 0)
{
delete [] psel_;
delete [] modes_;
delete [] hmodes_;
nsel_ = 0;
}
}
void FAMS::CleanPrunedModes()
{
if (npm_ > 0)
{
delete [] prunedmodes_;
delete [] nprunedmodes_;
npm_ = 0;
}
}
void FAMS::CleanHash()
{
if (hashCoeffs_ != NULL)
{
delete [] hashCoeffs_;
hashCoeffs_ = NULL;
}
}
int FAMS::LoadPoints(char* filename)
{
bgLog(“Load data points from %s...“filename);
CleanPoints();
FILE* fd;
fd = fopen(filename “r“);
if (!fd)
{
bgLog(“Error opening %s\n“ filename);
return 1;
}
fscanf(fd “%d %d“ &n_ &d_);
if ((n_<1) || (d_<1))
{
bgLog(“Error reading %s\n“ filename);
fclose(fd);
return 1;
}
// allocate data
float* pttemp;
pttemp = new float[n_*d_];
int i;
for (i=0; (i<(n_*d_)) && (fscanf(fd “%g“ &pttemp[i]) == 1); i++);
fclose(fd);
if (i!= (n_*d_))
{
bgLog(“Error reading %s\n“ filename);
delete [] pttemp;
return 1;
}
// allocate and convert to integer
for (i=0 minVal_=pttemp[0] maxVal_=pttemp[0]; i<(n_*d_); i++)
{
if (minVal_>pttemp[i])
minVal_ = pttemp[i];
else if (maxVal_ maxVal_ = pttemp[i];
}
data_ = new unsigned short[n_*d_];
rr_ = new double[d_];
hasPoints_ = 1;
float deltaVal = maxVal_-minVal_;
if (deltaVal == 0) deltaVal = 1;
for (i=0; i<(n_*d_); i++)
data_[i] = (unsigned short) (65535.0*(pttemp[i]-minVal_)/deltaVal);
delete [] pttemp;
dataSize_ = d_*sizeof(unsigned short);
points_ = new fams_point[n_];
unsigned short* dtempp;
for (i=0 dtempp=data_; i {
points_[i].data_ = dtempp;
points_[i].usedFlag_ = 0;
}
bgLog(“done\n“);
return 0;
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 91136 2003-11-27 14:22 fams.ncb
文件 54784 2003-11-27 14:22 fams.opt
文件 1228 2003-11-27 14:22 fams.plg
文件 36476 2003-11-27 14:22 fams.cpp
文件 11187 2003-11-27 13:56 fams.h
文件 4336 2003-11-26 10:22 fams.dsp
文件 3370 2003-10-05 15:43 README.txt
文件 531 2003-08-14 13:39 fams.dsw
- 上一篇:操作系统-页式存储管理
- 下一篇:基于视觉熵的视觉注意计算模型
相关资源
- 红帽 OpenShift 的业务价值
- Orientation-resolved 3d5/2 energy shift of Rh
- Photoluminescence and photoabsorbance blue shi
- Coordination-resolved 4f binding energy shift
- Spectroscopic Study on Cu2+-induced Abnormally
- 基于k-means聚类的财务欺诈类型分类
- K-means算法论文
- 基于meanshift和粒子滤波的目标跟踪代
- 基于Kmean聚类的关键帧提取代码
- PCA-KDKM算法及其在微博舆情中的应用
- 1种新的散乱点云快速去噪算法
- 改进的k_均值聚类排挤小生境遗传算法
- Kmeans算法为各国体育水平分类
- 基于opencv的手势识别程序,亲测可用
- LBG算法K-means
- 灰度图像的中值滤波算法verilog实现
- 基于kmeans算法的图像颜色量化
- K-Means++ 算法
- ISODATA及K-means聚类算法
- meanshift均值漂移目标跟踪
- Data Clustering 50 years beyond kmeans 翻译
- 卢浮宫博物馆人员疏散模型
- do280 ocp3.9管理手册
- 红帽云RHCA OpenShift DO280-OCP3.9-全程随堂
- K-Means图像分割算法实现
- 基于聚类Kmeans算法实现客户价值分析
- K-means.rar
- vs2005-camshift.rar
- camshift 目标跟踪程序
- k-means++ the advantages of careful seeding
评论
共有 条评论