资源简介
经典的faster RCNN pytorch代码,亲测可用!适合初学者学习!

代码片段和文件信息
import cv2
import numpy as np
from faster_rcnn import network
from faster_rcnn.faster_rcnn import FasterRCNN
from faster_rcnn.utils.timer import Timer
def test():
import os
im_file = ‘demo/004545.jpg‘
# im_file = ‘data/VOCdevkit2007/VOC2007/JPEGImages/009036.jpg‘
# im_file = ‘/media/longc/Data/data/2DMOT2015/test/ETH-Crossing/img1/000100.jpg‘
image = cv2.imread(im_file)
model_file = ‘/media/longc/Data/models/VGGnet_fast_rcnn_iter_70000.h5‘
# model_file = ‘/media/longc/Data/models/faster_rcnn_pytorch3/faster_rcnn_100000.h5‘
# model_file = ‘/media/longc/Data/models/faster_rcnn_pytorch2/faster_rcnn_2000.h5‘
detector = FasterRCNN()
network.load_net(model_file detector)
detector.cuda()
detector.eval()
print(‘load model successfully!‘)
# network.save_net(r‘/media/longc/Data/models/VGGnet_fast_rcnn_iter_70000.h5‘ detector)
# print(‘save model succ‘)
t = Timer()
t.tic()
# image = np.zeros(shape=[600 800 3] dtype=np.uint8) + 255
dets scores classes = detector.detect(image 0.7)
runtime = t.toc()
print(‘total spend: {}s‘.format(runtime))
im2show = np.copy(image)
for i det in enumerate(dets):
det = tuple(int(x) for x in det)
cv2.rectangle(im2show det[0:2] det[2:4] (255 205 51) 2)
cv2.putText(im2show ‘%s: %.3f‘ % (classes[i] scores[i]) (det[0] det[1] + 15) cv2.FONT_HERSHEY_PLAIN
1.0 (0 0 255) thickness=1)
cv2.imwrite(os.path.join(‘demo‘ ‘out.jpg‘) im2show)
cv2.imshow(‘demo‘ im2show)
cv2.waitKey(0)
if __name__ == ‘__main__‘:
test()
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2018-05-16 10:09 faster_rcnn_pytorch-master\
文件 1176 2018-05-16 10:09 faster_rcnn_pytorch-master\.gitignore
文件 1057 2018-05-16 10:09 faster_rcnn_pytorch-master\LICENSE
文件 3245 2018-05-16 10:09 faster_rcnn_pytorch-master\README.md
文件 0 2018-05-16 10:09 faster_rcnn_pytorch-master\__init__.py
文件 1629 2018-05-16 10:09 faster_rcnn_pytorch-master\demo.py
目录 0 2018-05-16 10:09 faster_rcnn_pytorch-master\demo\
文件 123072 2018-05-16 10:09 faster_rcnn_pytorch-master\demo\004545.jpg
文件 128748 2018-05-16 10:09 faster_rcnn_pytorch-master\demo\out.jpg
目录 0 2018-05-16 10:09 faster_rcnn_pytorch-master\experiments\
目录 0 2018-05-16 10:09 faster_rcnn_pytorch-master\experiments\cfgs\
文件 690 2018-05-16 10:09 faster_rcnn_pytorch-master\experiments\cfgs\faster_rcnn_end2end.yml
目录 0 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\
文件 0 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\__init__.py
目录 0 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\datasets\
文件 1409 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\datasets\__init__.py
文件 16805 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\datasets\coco.py
文件 1336 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\datasets\ds_utils.py
文件 2440 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\datasets\factory.py
文件 22501 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\datasets\imagenet3d.py
文件 10571 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\datasets\imdb.py
文件 16551 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\datasets\imdb2.py
文件 31342 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\datasets\kitti.py
文件 22144 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\datasets\kitti_tracking.py
文件 15743 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\datasets\kittivoc.py
文件 10123 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\datasets\nissan.py
文件 10064 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\datasets\nthu.py
文件 30657 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\datasets\pascal3d.py
文件 14633 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\datasets\pascal_voc.py
文件 29418 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\datasets\pascal_voc2.py
文件 7244 2018-05-16 10:09 faster_rcnn_pytorch-master\faster_rcnn\datasets\voc_eval.py
............此处省略77个文件信息
- 上一篇:基于双目视觉的深度计算和三维重建
- 下一篇:加强版Qcharts曲线支持散点图
相关资源
- Simulation of Active Heave Compensation System
- 机器学习个人笔记完整版v5.2-A4打印版
- Experiment investigation of deep-drawing sheet
- TH upstream-inhibited ARHGAP12 subnetwork for
- Bishop - Pattern Recognition And Machine Learn
- [en]深度学习[Deep Learning: Adaptive Compu
- 基于SSD的车辆检测与识别
- Wikipedia机器学习迷你电子书之四《D
- AV Foundation 开发秘籍 英文版 Learning
- Google DeepMind的David Silver的强化学习课
- Google论文\“Wide & Deep Learning for Recom
- Learning From Data Yaser S. Abu-Mostafa
- 《增强学习导论》Reinforcement Learning
- 德州扑克DeepStack算法.pdf
- titanic_dataset.csv泰坦尼克数据集
- SSD目标检测算法论文-英文原版
- deepstack算法详解
- 深度学习算法论文
- TensorFlow Machine Learning Cookbook+无码高清
- Hands-On Machine Learning with Scikit-Learn an
- Vapnik经典之作The Nature Of Statistical Le
- 论文研究-基于改进SSD的高效目标检测
- Learning Generative Adversarial Networks 无水印
- faster rcnn流程图
- 良哥独创Linux deepin电脑系统装回wind
- Algorithms for reinforcement learning
- yolo,yolov2yolov3论文原文
- DeepMind 强化学习中文讲义
- 深度学习作业lr_utils和对应数据集
- Bioinformatics Algorithms: an Active Learning
评论
共有 条评论