资源简介
含有目标检测代码和模型,需要opencv3.3以上版本,在cpu环境下运行
代码片段和文件信息
# USAGE
# python real_time_object_detection.py --prototxt MobileNetSSD_deploy.prototxt.txt --model MobileNetSSD_deploy.caffemodel
# import the necessary packages
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument(“-p“ “--prototxt“default=“C:\\Users\\MY\\Desktop\\personDetect\\MobileNetSSD_deploy_0.prototxt“
help=“path to Caffe ‘deploy‘ prototxt file“)
ap.add_argument(“-m“ “--model“default=“C:\\Users\\MY\\Desktop\\personDetect\\MobileNetSSD_deploy_0.caffemodel“
help=“path to Caffe pre-trained model“)
ap.add_argument(“-v“ “--video“ default=“E:\pose-estimation\object-detection-master\test“
help=“path to Caffe video file“)
ap.add_argument(“-c“ “--confidence“ type=float default=0.2
help=“minimum probability to filter weak detections“)
args = vars(ap.parse_args())
# initialize the list of class labels MobileNet SSD was trained to
# detect then generate a set of bounding box colors for each class
‘‘‘
CLASSES = [“background“ “aeroplane“ “bicycle“ “bird“ “boat“
“bottle“ “bus“ “car“ “cat“ “chair“ “cow“ “diningtable“
“dog“ “horse“ “motorbike“ “person“ “pottedplant“ “sheep“
“sofa“ “train“ “tvmonitor“]
‘‘‘
CLASSES = [“background“ “aeroplane“ “bicycle“ “bird“ “boat“
“bottle“ “bus“ “car“ “cat“ “chair“ “cow“ “diningtable“
“dog“ “horse“ “motorbike“ “person“ “pottedplant“ “sheep“
“sofa“ “train“ “tvmonitor“]
COLORS = np.random.uniform(0 255 size=(len(CLASSES) 3))
# load our serialized model from disk
print(“[INFO] loading model...“)
net2 = cv2.dnn.readNetFromCaffe(args[“prototxt“] args[“model“])
# net2=cv2.dnn.readNetFromCaffe(“VGG_SSD_300.prototxt““VGG_SSD_300.caffemodel“)
# net2=cv2.dnn.readNetFromTensorflow(“face.pb“)
# initialize the video stream allow the cammera sensor to warmup
# and initialize the FPS counter
print(“[INFO] starting video stream...“)
#vs = VideoStream(src=0).start()
# vs =cv2.VideoCapture(‘C:\\Users\\voidking\\Desktop\\real-time-object-detection\\test_video.flv‘)
# vs =cv2.VideoCapture(‘./test_video.flv‘)
# vs =cv2.VideoCapture(“video1.mp4“)
vs =cv2.VideoCapture(0)
time.sleep(2.0)
fps = FPS().start()
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 400 pixels
#frame = vs.read()
#frame = imutils.resize(frame width=400)
# grab the frame from the threaded video file stream
(grabbedframe) = vs.read()
# if the frame was not grabbed then we have reached the end
# of the stream
if not grabbed:
break
frame = imutils.resize(frame width=800)
# grab the frame dimensions and convert it to a blob
(h w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame (300 300))
0.007843 (300 300) 127.5)
# pass the blob through the network and obtain the detection
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 288 2018-05-29 10:03 personDetect\.idea\misc.xm
文件 276 2018-05-29 10:03 personDetect\.idea\modules.xm
文件 398 2018-05-29 10:05 personDetect\.idea\personDetect.iml
文件 8418 2018-05-29 11:23 personDetect\.idea\workspace.xm
文件 23147564 2018-03-29 15:47 personDetect\MobileNetSSD_deploy_0.caffemodel
文件 29353 2018-03-29 15:47 personDetect\MobileNetSSD_deploy_0.prototxt
文件 5378 2018-06-25 10:00 personDetect\real_time_ob
目录 0 2018-05-29 10:05 personDetect\.idea\inspectionProfiles
目录 0 2018-05-29 11:23 personDetect\.idea
目录 0 2018-05-29 10:13 personDetect
----------- --------- ---------- ----- ----
23191675 10
相关资源
- 嵌入式实时操作系统μC\\OS-Ⅱ(第2版
- Linux 下RTP实时打包发送H.264码流
- BING算法——纯检测
- live555-20181214基于ARM-linux从网络摄像机
- zw_摄像头实时监控与报警系统Opencv.
- Learning Jupyter 5
- 安卓高德地图实时定位方法的封装
- 用于视频的目标检测
- 实时碰撞检测算法技术.pdf
- Bezier曲线(任意次数)程序实现可用
- 小浣熊检测数据集
- 基于背景差法的运动目标检测
- 嵌入式系统的实时概念
- 手写数字识别器GUI.zip
- 嵌入式实时操作系统μC/OS-III-原版书
- 嵌入式实时操作系统μC/OS-III-原版书
- 卡尔曼滤波及其实时应用 第4版
- 公交实时到站信息查询工具
- 嵌入式实时操作系统small RTOS51原理及
- 机器学习个人笔记完整版v4.7.pdf
- 运动目标常用检测算法文章English Ve
- QNX实时操作体统系统源码
- ROS机器人编程实践_源码
- 基于QT的串口工具——实时显示波形
- 安卓自定义状态栏,监听WiFi信号,电
- Ext 在线实时聊天系统 1 0完整的包
- 图形学经典试验代码1.三维变换2.实时
- 《嵩天 礼欣 黄天羽 著 Python语言程序
- 深入浅出带你学Python冲击年薪30万配套
- python实现车道线识别程序
评论
共有 条评论