资源简介
Graphs are useful data structures in complex real-life applications such as modeling physical systems, learning molecular fingerprints, controlling traffic networks, and recommending friends in social networks. However, these tasks require dealing with non-Euclidean graph data that contains rich relational information between elements and cannot be well handled by traditional deep learning models (e.g., convolutional neural networks (CNNs) or recurrent neural networks (RNNs)). Nodes in graphs usually contain useful feature information that cannot be well addressed in most unsupervised representation learning methods (e.g., network embedding methods). Graph neural networks (GNNs) are proposed to combine the feature information and the graph structure to learn better representations on graphs via feature propagation and aggregation. Due to its convincing performance and high interpretability, GNN has recently become a widely applied graph analysis tool.
代码片段和文件信息
- 上一篇:PhotoZoom_Pro.zip
- 下一篇:电赛 教程、经验、培训.zip
相关资源
- 卷积神经网络基础及发展现状
- CNN卷积神经网络应用于人脸识别带详
- 卷积神经网络文字识别
- 卷积神经网络+网络优化算法+目标检测
- 魏秀参:解析卷积神经网络
- 吴恩达老师深度学习第四课卷积神经
- 卷积神经网络车牌识别164048
- 卷积神经网络车牌识别
- 现流行的AlexNetVGGNetGoogleNetSENetResNet等
- 深度学习卷积神经网络代码
- 手写数字识别MNIST数据集及卷积神经网
- 卷积神经网络CNNs-(从AlexNet开始)
- CS231 卷积神经网络(中文版带书签)
- CNN卷积神经网络识别手写汉字MNIST数据
- 卷积神经网络CNN进行图像分类
- 卷积神经网络实现情感分类
- 吴恩达卷积神经网络课件与笔记
- 卷积神经网络图像分类和检测必看论
- 基于CNN和SVM的猫狗识别
- 卷积神经网络实现车牌识别.zip
- 卷积神经网络训练自己模型
- 深度学习:卷积神经网络从入门到精通
- 基于卷积神经网络的图像去噪基础篇
- 卷积神经网络ppt96396
- 完整的CNN卷积神经网络
- 深度学习:卷积神经网络从入门到精
- 基于tensorflow的卷积神经网络数字手写
- 人脸128个关键点识别基于卷积神经网
- 基于卷积神经网络和注意力模型的文
- 论文研究-基于卷积神经网络的城市交
评论
共有 条评论