资源简介
该资源为MTCNN实现人脸检测与定位完整代码,下载压缩包,解压并将待检测的图片放入文件夹中,修改mtcnn.py中的图片路径,最后运行mtcnn.py即可。
代码片段和文件信息
“““ Tensorflow implementation of the face detection / alignment algorithm found at
https://github.com/kpzhang93/MTCNN_face_detection_alignment
“““
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted free of charge to any person obtaining a copy
# of this software and associated documentation files (the “Software“) to deal
# in the Software without restriction including without limitation the rights
# to use copy modify merge publish distribute sublicense and/or sell
# copies of the Software and to permit persons to whom the Software is
# furnished to do so subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED “AS IS“ WITHOUT WARRANTY OF ANY KIND EXPRESS OR
# IMPLIED INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM DAMAGES OR OTHER
# LIABILITY WHETHER IN AN ACTION OF CONTRACT TORT OR OTHERWISE ARISING FROM
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six import string_types iteritems
import numpy as np
import tensorflow as tf
#from math import floor
import cv2
import os
def layer(op):
“““Decorator for composable network layers.“““
def layer_decorated(self *args **kwargs):
# Automatically set a name if not provided.
name = kwargs.setdefault(‘name‘ self.get_unique_name(op.__name__))
# Figure out the layer inputs.
if len(self.terminals) == 0:
raise RuntimeError(‘No input variables found for layer %s.‘ % name)
elif len(self.terminals) == 1:
layer_input = self.terminals[0]
else:
layer_input = list(self.terminals)
# Perform the operation and get the output.
layer_output = op(self layer_input *args **kwargs)
# Add to layer LUT.
self.layers[name] = layer_output
# This output is now the input for the next layer.
self.feed(layer_output)
# Return self for chained calls.
return self
return layer_decorated
class Network(object):
def __init__(self inputs trainable=True):
# The input nodes for this network
self.inputs = inputs
# The current list of terminal nodes
self.terminals = []
# Mapping from layer names to layers
self.layers = dict(inputs)
# If true the resulting variables are set as trainable
self.trainable = trainable
self.setup()
def setup(self):
“““Construct the network. “““
raise NotImplementedError(‘Must be implemented by the subclass.‘)
def load(self data_path session i
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 27368 2018-08-22 18:42 MTCNN\det1.npy
文件 401681 2018-08-22 18:42 MTCNN\det2.npy
文件 1557360 2018-08-22 18:43 MTCNN\det3.npy
文件 31697 2018-08-20 13:22 MTCNN\detect_face.py
文件 1621 2018-08-22 18:35 MTCNN\mtcnn.py
目录 0 2018-08-27 13:04 MTCNN\
相关资源
- 深度学习:CNN卷积神经网络讲解pdf
- 人脸识别源码,facenet,深度学习
- MTCNN_face_detection_alignment.zip
- 深度学习 故障诊断PPT
- 东南大学 崇志宏:贝叶斯深度学习
- Deep Learning深度学习学习笔记整理系列
- deep learning 深度学习的现状及局限综述
- PlayCamera[基础Google自带算法Camera实时检
- VGG16图像分类源代码、测试图片
- 基于深度学习的路网短时交通流预测
- 基于深度学习的手语识别综述
- 深度学习介绍ppt
- 基于深度学习的人脸识别研究
- 人脸检测-毕业论文
- 眼球跟踪定位算法,eyelike
- 基于知识图谱的问答系统综述
- 神经网络与深度学习中文版
- 基于AdaBoost算法的人脸检测(北京大学
- SciPy_Tokyo_Hands-on TensorFlow 2.0.pdf
- 解决FCN build error MITSceneParsing.pickle
- Neural Networks and Deep Learning中文版
- 深度有趣-人工智能实战项目集合
- CNN原理和简单实现
- 基于HLS的Tiny_yolo卷积神经网络加速研
- 解析深度学习卷积神经网络原理与视
- 解析深度学习:卷积神经网络原理与
- Neural networks and deep learning pdf 英文版
- 《神经网络与深度学习-邱锡鹏》习题
- 深度学习网络-目标检测
- Keras中文文档 PDF版
评论
共有 条评论