资源简介
该资源为MTCNN实现人脸检测与定位完整代码,下载压缩包,解压并将待检测的图片放入文件夹中,修改mtcnn.py中的图片路径,最后运行mtcnn.py即可。

代码片段和文件信息
“““ Tensorflow implementation of the face detection / alignment algorithm found at
https://github.com/kpzhang93/MTCNN_face_detection_alignment
“““
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted free of charge to any person obtaining a copy
# of this software and associated documentation files (the “Software“) to deal
# in the Software without restriction including without limitation the rights
# to use copy modify merge publish distribute sublicense and/or sell
# copies of the Software and to permit persons to whom the Software is
# furnished to do so subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED “AS IS“ WITHOUT WARRANTY OF ANY KIND EXPRESS OR
# IMPLIED INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM DAMAGES OR OTHER
# LIABILITY WHETHER IN AN ACTION OF CONTRACT TORT OR OTHERWISE ARISING FROM
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six import string_types iteritems
import numpy as np
import tensorflow as tf
#from math import floor
import cv2
import os
def layer(op):
“““Decorator for composable network layers.“““
def layer_decorated(self *args **kwargs):
# Automatically set a name if not provided.
name = kwargs.setdefault(‘name‘ self.get_unique_name(op.__name__))
# Figure out the layer inputs.
if len(self.terminals) == 0:
raise RuntimeError(‘No input variables found for layer %s.‘ % name)
elif len(self.terminals) == 1:
layer_input = self.terminals[0]
else:
layer_input = list(self.terminals)
# Perform the operation and get the output.
layer_output = op(self layer_input *args **kwargs)
# Add to layer LUT.
self.layers[name] = layer_output
# This output is now the input for the next layer.
self.feed(layer_output)
# Return self for chained calls.
return self
return layer_decorated
class Network(object):
def __init__(self inputs trainable=True):
# The input nodes for this network
self.inputs = inputs
# The current list of terminal nodes
self.terminals = []
# Mapping from layer names to layers
self.layers = dict(inputs)
# If true the resulting variables are set as trainable
self.trainable = trainable
self.setup()
def setup(self):
“““Construct the network. “““
raise NotImplementedError(‘Must be implemented by the subclass.‘)
def load(self data_path session i
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 27368 2018-08-22 18:42 MTCNN\det1.npy
文件 401681 2018-08-22 18:42 MTCNN\det2.npy
文件 1557360 2018-08-22 18:43 MTCNN\det3.npy
文件 31697 2018-08-20 13:22 MTCNN\detect_face.py
文件 1621 2018-08-22 18:35 MTCNN\mtcnn.py
目录 0 2018-08-27 13:04 MTCNN\
相关资源
- 广联达6.0写锁包,2020年11月最新
- 机器学习个人笔记完整版v5.2-A4打印版
- 深度学习卷积神经网络可检测和分类
- GAN对抗式生成网络的应用:从图片上
- [en]深度学习[Deep Learning: Adaptive Compu
- 李宏毅-机器学习(视频2017完整)
- 吴恩达深度学习第一课第四周作业及
- 机器学习深度学习 PPT
- 麻省理工:深度学习介绍PPT-1
- 论文研究-基于肤色和AdaBoost算法的彩
- Wikipedia机器学习迷你电子书之四《D
- 深度学习在遥感中的应用综述
- 深度学习数据集标注
- 深度学习算法实践源码-吴岸城
- 李宏毅深度学习ppt
- SSD目标检测算法论文-英文原版
- 台湾李宏毅教授深度学习讲义 pdf
- 基于深度学习实现人脸识别包含模型
- 深度学习与PyTorch-代码和PPT.zip
- 测试工程源码1(一种基于深度学习的
- 深度学习: MNIST的数据集
- 《深度学习》 高清版本中文PDFIan Go
- Emgu.CV 打开视频与人脸检测
- 今日头条38万条新闻数据标题
- 深度学习算法论文
- TensorFlow Machine Learning Cookbook+无码高清
- Hands-On Machine Learning with Scikit-Learn an
- Neural Networks:Tricks of the Trade+无码高清
- 基于深度学习的图像超分辨率算法论
- 人工智能初步学习总结
评论
共有 条评论