资源简介
Chapter 1 provides in-depth information about how neural networks function, where to get data from, and how to preprocess that data to make it easier to consume.
Chapter 2 is about getting stuck and what to do about it. Neural nets are notoriously hard to debug and the tips and tricks in this chapter on how to make them behave will come in handy when going through the more project-oriented recipes in the rest of the book. If you are impatient, you can skip this chapter and go back to it later when you do get stuck.
Chapters 3 through 15 are grouped around media, starting with text rocessing, followed by image processing, and finally music processing in Chapter 15. Each chapter describes one project split into various recipes. Typically a chapter will start with a data acquisition recipe, followed by a few recipes that build toward the goal of the chapter and a recipe on data visualization.
Chapter 16 is about using models in production. Running experiments in notebooks is great, but ultimately we want to share our results with actual users and get our models run on real servers or mobile devices. This chapter goes through the options.
代码片段和文件信息
相关资源
- 人工智能及其应用第4版
- 斯坦福UFLDL深度学习课程翻译版合集
- deep learning (Bengio大作:深度学习中文
- 基于机器视觉和深度学习的目标识别
- 深度学习在医学图像识别中的研究
- 基于深度学习的脑电信号研究
- 基于深度学习的车牌识别
- Neural Network and Deep Learning神经网络与深
- 神经网络与深度学习(Neural Networks
- 深度学习与计算机视觉.zip
- 基于深度学习的目标检测研究进展
- 国外近十年深度学习的研究现状与发
-
中文翻译 SphereFace Deep Hypersphere em
- DeepWalk.pptx
- 基于深度学习LSTM网络的短期电力负荷
- 深度学习在MR膝关节软骨图像中的分割
- 基于pytorch的cnn水果分类器深度学习平
- Neural Networks and Deep Learning神经网络与
- DBN源码,深度学习领域的适合初学者
- 关于深度学习的中英文文献资源5篇
- 神经网络与深度学习2018年4月4日0.5版
- 机器学习和深度学习模型汇总
- Deep+Learning深度学习学习笔记整理系列
- 基于卷积神经网络深度学习的物品分
- 基于深度学习的电动汽车智能充电需
- TensorFlow实战Google深度学习框架.pdf
- 高被引的深度学习综述的全文翻译+原
- crack detection
- 吴恩达课程所需lr_utils.py文件以及da
- 2018-深度强化学习综述
评论
共有 条评论