资源简介

代码片段和文件信息
#!/usr/bin/env python3
import sys
import re
def create_gls_dict():
term_file = open(‘../terminology.tex‘ ‘r‘)
term_file.readline()
terms = term_file.read()
term_file.close()
term_name_dict = {}
term_symbol_dict = {}
for term in terms.split(‘\n\n‘):
tmp = term.strip().split(‘\n‘)
if tmp[2].strip()[:4] != ‘name‘:
print(tmp)
dirty_term = tmp[0][18:]
term_name_dict[dirty_term[:dirty_term.find(‘}‘)]] = tmp[2].strip()[5:-1]
for s in tmp:
if s.strip()[:6] == ‘symbol‘:
dirty_symbol = s.strip()[8:]
term_symbol_dict[dirty_term[:dirty_term.find(‘}‘)]] = dirty_symbol[:dirty_symbol.find(‘}‘)]
return term_name_dict term_symbol_dict
def replace_single_gls(tex p term_dict):
pl = p.finditer(tex)
new_tex = ‘‘
prev_pos = 0
for i in pl:
new_tex += tex[prev_pos:i.start()] + term_dict[i.group()[i.group().find(‘{‘)+1:-1]]
prev_pos = i.end()
new_tex += tex[prev_pos:]
return new_tex
def replace_all_gls(input_tex term_name_dict term_symbol_dict):
# matched \gls{}
tex_file = open(input_tex ‘r‘)
tex = tex_file.read()
p = re.compile(‘\\\\gls\\{[^\\}]*\\}‘)
tex = replace_single_gls(tex p term_name_dict)
p = re.compile(‘\\\\firstgls\\{[^\\}]*\\}‘)
tex = replace_single_gls(tex p term_name_dict)
p = re.compile(‘\\\\firstall\\{[^\\}]*\\}‘)
tex = replace_single_gls(tex p term_name_dict)
p = re.compile(‘\\\\firstacr\\{[^\\}]*\\}‘)
tex = replace_single_gls(tex p term_name_dict)
p = re.compile(‘\\\\glsacr\\{[^\\}]*\\}‘)
tex = replace_single_gls(tex p term_name_dict)
p = re.compile(‘\\\\glsentrytext\\{[^\\}]*\\}‘)
tex = replace_single_gls(tex p term_name_dict)
p = re.compile(‘\\\\glssymbol\\{[^\\}]*\\}‘)
tex = replace_single_gls(tex p term_symbol_dict)
return tex
if __name__ == ‘__main__‘:
input_tex = sys.argv[1]
term_name_dict term_symbol_dict = create_gls_dict()
print(replace_all_gls(input_tex term_name_dict term_symbol_dict))
#print(term_name_dict term_symbol_dict)
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2017-02-12 01:25 deeplearningbook-chinese-master\
文件 256 2017-02-12 01:25 deeplearningbook-chinese-master\.gitignore
目录 0 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter1\
文件 17 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter1\README.md
文件 1549009 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter1\dlbook_cn_chapter1.pdf
文件 51618 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter1\introduction.tex
目录 0 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter10\
文件 17 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter10\README.md
文件 97102 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter10\sequence_modeling_rnn.tex
目录 0 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter11\
文件 20 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter11\README.md
文件 49127 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter11\practical_methodology.tex
目录 0 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter12\
文件 20 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter12\README.md
文件 101813 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter12\applications.tex
目录 0 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter13\
文件 20 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter13\README.md
文件 29362 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter13\linear_factor_models.tex
目录 0 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter14\
文件 20 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter14\README.md
文件 50918 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter14\autoencoders.tex
目录 0 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter15\
文件 20 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter15\README.md
文件 75445 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter15\representation_learning.tex
目录 0 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter16\
文件 20 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter16\README.md
文件 76640 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter16\structured_probabilistic_modelling.tex
目录 0 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter17\
文件 20 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter17\README.md
文件 36796 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter17\monte_carlo_methods.tex
目录 0 2017-02-12 01:25 deeplearningbook-chinese-master\Chapter18\
............此处省略150个文件信息
相关资源
- 广联达6.0写锁包,2020年11月最新
- objc-io中文书籍6本全集2019epud.zip
- 机器学习个人笔记完整版v5.2-A4打印版
- 深度学习卷积神经网络可检测和分类
- JMeter开源性能官方书籍pdf
- GAN对抗式生成网络的应用:从图片上
- [en]深度学习[Deep Learning: Adaptive Compu
- 李宏毅-机器学习(视频2017完整)
- 吴恩达深度学习第一课第四周作业及
- 机器学习深度学习 PPT
- 麻省理工:深度学习介绍PPT-1
- 游戏运营.pdf 游戏运营书籍
- Wikipedia机器学习迷你电子书之四《D
- 最优化陈宝林书籍高清pdf和ppt打包
- 深度学习在遥感中的应用综述
- 66本黑客书籍全集打包在家轻松防黑客
- 深度学习数据集标注
- 深度学习算法实践源码-吴岸城
- 《蚁群优化》书籍 张军、胡晓敏 译多
- 李宏毅深度学习ppt
- SSD目标检测算法论文-英文原版
- 台湾李宏毅教授深度学习讲义 pdf
- 基于深度学习实现人脸识别包含模型
- 深度学习与PyTorch-代码和PPT.zip
- 测试工程源码1(一种基于深度学习的
- 深度学习: MNIST的数据集
- 《深度学习》 高清版本中文PDFIan Go
- 神经网络原理 Simon.Haykin 编——神经网
- 今日头条38万条新闻数据标题
- 黑客入门书籍
评论
共有 条评论