-
大小: 2KB文件类型: .py金币: 1下载: 0 次发布日期: 2021-06-02
- 语言: Python
- 标签: LSTM DeepLEarning
资源简介
用 LSTM 做时间序列预测的一个小例子,详情见我滴博文。
代码片段和文件信息
import numpy
import matplotlib.pyplot as plt
from pandas import read_csv
import math
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import pandas as pd
import os
from keras.models import Sequential load_model
# load the dataset
dataframe = read_csv(‘./international-airline-passengers.csv‘ usecols=[1] engine=‘python‘ skipfooter=3)
dataset = dataframe.values
train_size = int(len(dataset) * 0.65)
scaler = MinMaxScaler(feature_range=(0 1))
dataset = scaler.fit_transform(dataset)
trainlist = dataset[:train_size:]
testlist = dataset[train_size::]
# X is the number of passengers at a given time (t) and Y is the number of passengers at the next time (t + 1).
# convert an array of values into a dataset matrix
def create_dataset(dataset look_back):
#这里的look_back与timestep相同
dataX dataY = [] []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back)]
dataX.append(a)
dataY.append(dataset[i+look_back])
return numpy.array(dataX)n
- 上一篇:python实现视频直播
- 下一篇:21天学通python.txt
相关资源
- deeplearningPID
- 运用LSTM对CPI数据进行预测.py
- Python-神经网络模型能够从音频演讲中
- Long Short-Term Memory Networks With Python
- python+keras+deeplearning
- MLP/RNN/LSTM模型进行IMDb情感分析
- Pillow-3.4.2-cp36-cp36m-win_amd64.whl python3
- Introduction to time series.pdf + Deep Time Se
- 时间序列预测讲义ARIMA&LSTM;及python代码
- Python-一个非常简单的BiLSTMCRF模型用于
- LSTM模型学习
- LSTM数据集+python源码
-
BeginningAnomalyDetectionUsingPython-ba
sedD - Python深度学习(中文版) 超清带书签
- Grokking Deep Learning 正式版pdf
- tensorflow-2.0.0-cp36-cp36m-win_amd64.whl
- 文字版pdf书和源代码:深度学习入门
- 深度学习入门:基于Python的理论与实
- 卷积神经网络实现图像分类
- PSO-LSTM.py
- 15.时间序列预测LSTM模型python代码实现
- LSTM预测股价代码
- LSTM股价预测(python).zip
- arima预测(附Python和测试数据)20037
- LSTM可以运行
- LSTM时间序列预测销量
- 基于lstm的语义相似度计算模型代码
- lstm_attention文本分类代码
- 基于LSTM的RNN网络人体骨骼关节点检测
- 时间长短序列网络LSTM
评论
共有 条评论