资源简介
MOOC上北大老师讲的《Tensorflow笔记》里的手写体识别代码,初学者食用,无误版。
代码片段和文件信息
#建“mnist_forward.py”
# mnist_forward.py
import tensorflow as tf
INPUT_NODE = 784
OUTPUT_NODE = 10
layer1_NODE = 500
def get_weight(shape regularizer):
w = tf.Variable(tf.truncated_normal(shape stddev=0.1))
if regularizer != None:
tf.add_to_collection(‘losses‘ tf.contrib.layers.l2_regularizer(regularizer)(w))#把正则化加入到losses里面
return w
def get_bias(shape):
b = tf.Variable(tf.zeros(shape))
return b
def forward(x regularizer):
w1 = get_weight([INPUT_NODE layer1_NODE] regularizer)
b1 = get_bias([layer1_NODE])
y1 = tf.nn.relu(tf.matmul(x w1) + b1)
w2 = get_weight([layer1_NODE OUTPUT_NODE] regularizer)
b2 = get_bias([OUTPUT_NODE])
y = tf.matmul(y1 w2) + b2
return y
#从此处重新建一个“mnist_backward.py“
# mnist_backward.py
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import os
BATCH_SIZE = 200
LEARNING_RATE_base = 0.1
LEARNING_RATE_DECAY = 0.99
REGULARIZER = 0.0001
STEPS = 50000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = “./model/“
MODEL_NAME = “mnist_model“
def backward(mnist):
x = tf.placeholder(tf.float32 [None mnist_forward.INPUT_NODE])
y_ = tf.placeholder(tf.float32 [None mnist_forward.OUTPUT_NODE])
y = mnist_forward.forward(x REGULARIZER)
global_step = tf.Variable(0 trainable=False)
ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y labels=tf.argmax(y_ 1))
cem = tf.reduce_mean(ce)
loss = cem + tf.add_n(tf.get_collection(“losses“))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_base
global_step
mnist.train.num_examples / BATCH_SIZE
LEARNING_RATE_DECAY
staircase=True)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss global_step=global_step)
ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY global_step)
ema_op = ema.apply(tf.trainable_variables())
with tf.control_dependencies([train_step ema_op]):
train_op = tf.no_op(name=“train“)
saver = tf.train.Saver()
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
for i in range(STEPS):
xs
- 上一篇:某网Python3.6+电商实战+Vue+Django
- 下一篇:文本查重系统
相关资源
- DeepLabV3-Tensorflow-master
- 基于TensorFlow实现CNN文本分类实验指导
- tensorflow2.0 yolo3目标检测算法
- tensorflow制作自己的灰度图像数据集并
- anaconda下安装tensorflow(注:不同版本
- 北京大学曹健老师-人工智能实践:
- Deep Learning With Python - Jason Brownlee
- Python-自然场景文本检测PSENet的一个
- Python-高效准确的EAST文本检测器的一个
- Python-TensorFlow弱监督图像分割
- Python-基于tensorflow实现的用textcnn方法
- Python-subpixel利用Tensorflow的一个子像素
- 【官方文档】TensorFlow Python API docume
-
tensorflow画风迁移代码 st
yle transfer - 简单粗暴 TensorFlow
- [PDF] Reinforcement Learning With Open AI Tens
- tensorflow目标检测代码
- 基于Python的手写字体识别系统
- 基于Tensorflow的人脸识别源码
- python TensorFlow 官方文档中文版
- Python-在TensorFlow中实现实现图像卷积网
- tensorflow-1.9.0-cp37-cp37m-win_amd64.whl
- Faster-RCNN-TensorFlow-Python3.5-master
- 聊天机器人tensorflow
- caffe模型转化为tensorflow模型
- Python-一个非常简单的BiLSTMCRF模型用于
- Python-Tensorflow仿AlphaGo框架实现的AI围棋
- Mask R-CNN源码(TensorFlow版本)
- 基于python3 tensorflow DBN_and_RNN的实现
- tensorflow-0.8.0-cp34-cp34m-linux_x86_64.whl
评论
共有 条评论