资源简介
FastDTW的一个Python实现
代码片段和文件信息
import os.path
from setuptools import setup find_packages Extension
from setuptools.command.build_ext import build_ext as _build_ext
import warnings
try:
from Cython.Build import cythonize
USE_CYTHON = True
except ImportError:
USE_CYTHON = False
# numpy path is needed for building with and without cython:
try:
import numpy
numpy_includes = [numpy.get_include()]
HAVE_NUMPY = True
except ImportError:
# “python setup.py build“ will not work and trigger fallback to pure python later on
# but “python setup.py clean“ will be successful with the first call of setup(...)
numpy_includes = []
HAVE_NUMPY = False
classifiers = [
‘Programming Language :: Python :: 2‘
‘Programming Language :: Python :: 3‘
‘Intended Audience :: Science/Research‘
‘License :: OSI Approved :: MIT License‘
‘Topic :: Scientific/Engineering‘
]
class build_ext(_build_ext):
def finalize_options(self):
_build_ext.finalize_options(self)
# Prevent numpy from thinking it is still in its setup process:
__builtins__.__NUMPY_SETUP__ = False
import numpy
self.include_dirs.append(numpy.get_include())
ext = ‘.pyx‘ if USE_CYTHON else ‘.cpp‘
extensions = [Extension(
‘fastdtw._fastdtw‘
[os.path.join(‘fastdtw‘ ‘_fastdtw‘ + ext)]
language=“c++“
include_dirs=numpy_includes
libraries=[“stdc++“]
)]
if USE_CYTHON:
extensions = cythonize(extensions)
dir_path = os.path.dirname(os.path.realpath(__file__))
with open(os.path.join(dir_path ‘README.rst‘)) as f:
long_description = f.read()
kwargs = {
‘name‘: ‘fastdtw‘
‘version‘: ‘0.3.2‘
‘author‘: ‘Kazuaki Tanida‘
‘url‘: ‘https://github.com/slaypni/fastdtw‘
‘description‘: ‘Dynamic Time Warping (DTW) algorithm with an O(N) time and memory complexity.‘
‘long_description‘: long_description
‘license‘: ‘MIT‘
‘keywords‘: [‘dtw‘]
‘install_requires‘: [‘numpy‘]
‘packages‘: find_packages()
‘ext_modules‘: extensions
‘test_suite‘: ‘tests‘
‘setup_requires‘: [‘pytest-runner‘]
‘tests_require‘: [‘pytest‘]
‘classifiers‘: classifiers
}
try:
setup(**kwargs)
except SystemExit:
del kwargs[‘ext_modules‘]
reason = ‘numpy missing ‘ if not HAVE_NUMPY else ‘‘
warnings.warn(reason+‘compilation failed. Installing pure python package‘)
setup(**kwargs)
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2019-04-06 18:30 fastdtw-master\
文件 115 2019-04-06 18:30 fastdtw-master\.gitignore
文件 1080 2019-04-06 18:30 fastdtw-master\LICENSE
文件 43 2019-04-06 18:30 fastdtw-master\MANIFEST.in
文件 216 2019-04-06 18:30 fastdtw-master\Pipfile
文件 13782 2019-04-06 18:30 fastdtw-master\Pipfile.lock
文件 762 2019-04-06 18:30 fastdtw-master\README.rst
目录 0 2019-04-06 18:30 fastdtw-master\fastdtw\
文件 102 2019-04-06 18:30 fastdtw-master\fastdtw\__init__.py
文件 890291 2019-04-06 18:30 fastdtw-master\fastdtw\_fastdtw.cpp
文件 15340 2019-04-06 18:30 fastdtw-master\fastdtw\_fastdtw.pyx
文件 5627 2019-04-06 18:30 fastdtw-master\fastdtw\fastdtw.py
文件 22 2019-04-06 18:30 fastdtw-master\setup.cfg
文件 2421 2019-04-06 18:30 fastdtw-master\setup.py
目录 0 2019-04-06 18:30 fastdtw-master\tests\
文件 2038 2019-04-06 18:30 fastdtw-master\tests\test_fastdtw.py
相关资源
- Python-DeepMoji模型的pyTorch实现
- Python-使用DeepFakes实现YouTube视频自动换
- Python-一系列高品质的动漫人脸数据集
- Python-Insightface人脸检测识别的最小化
- Python-自然场景文本检测PSENet的一个
- Python-在特征金字塔网络FPN的Pytorch实现
- Python-PyTorch实时多人姿态估计项目的实
- Python-用PyTorch10实现FasterRCNN和MaskRCNN比
- Python-心脏核磁共振MRI图像分割
- Python-基于YOLOv3的行人检测
- Python-RLSeq2Seq用于SequencetoSequence模型的
- Python-PyTorch对卷积CRF的参考实现
- Python-高效准确的EAST文本检测器的一个
- Python-pytorch实现的人脸检测和人脸识别
- Python-UNet用于医学图像分割的嵌套UN
- Python-TensorFlow弱监督图像分割
- Python-基于tensorflow实现的用textcnn方法
- Python-Keras实现Inceptionv4InceptionResnetv1和
- Python-pytorch中文手册
- Python-FastSCNN的PyTorch实现快速语义分割
- Python-滑动窗口高分辨率显微镜图像分
- Python-使用MovieLens数据集训练的电影推
- Python-机器学习驱动的Web应用程序防火
- Python-subpixel利用Tensorflow的一个子像素
-
Python-汉字的神经风格转移Neuralst
y - Python-神经网络模型能够从音频演讲中
- Python-深度增强学习算法的PyTorch实现策
- Python-基于深度学习的语音增强使用
- Python-基于知识图谱的红楼梦人物关系
- Python-STGAN用于图像合成的空间变换生
评论
共有 条评论