资源简介
O2O优惠券使用预测的第一名解决方案
代码片段和文件信息
# data file path
online_train_file_path = ‘./data/ccf_data_revised/ccf_online_stage1_train.csv‘
offline_train_file_path = ‘./data/ccf_data_revised/ccf_offline_stage1_train.csv‘
offline_test_file_path = ‘./data/ccf_data_revised/ccf_offline_stage1_test_revised.csv‘
# split data path
active_user_offline_data_path = ‘./data/data_split/active_user_offline_record.csv‘
active_user_online_data_path = ‘./data/data_split/active_user_online_record.csv‘
offline_user_data_path = ‘./data/data_split/offline_user_record.csv‘
online_user_data_path = ‘./data/data_split/online_user_record.csv‘
train_path = ‘./data/data_split/train_data/‘
train_feature_data_path = train_path + ‘features/‘
train_raw_data_path = train_path + ‘raw_data.csv‘
train_dataset_path = train_path + ‘dataset.csv‘
train_raw_online_data_path = train_path + ‘raw_online_data.csv‘
validate_path = ‘./data/data_split/validate_data/‘
validate_feature_data_path = validate_path + ‘features/‘
validate_raw_data_path = validate_path + ‘raw_data.csv‘
validate_dataset_path = validate_path + ‘dataset.csv‘
validate_raw_online_data_path = validate_path + ‘raw_online_data.csv‘
predict_path = ‘./data/data_split/predict_data/‘
predict_feature_data_path = predict_path + ‘features/‘
predict_raw_data_path = predict_path + ‘raw_data.csv‘
predict_dataset_path = predict_path + ‘dataset.csv‘
predict_raw_online_data_path = predict_path + ‘raw_online_data.csv‘
# model path
model_path = ‘./data/model/model‘
model_file = ‘/model‘
model_dump_file = ‘/model_dump.txt‘
model_fmap_file = ‘/model.fmap‘
model_feature_importance_file = ‘/feature_importance.png‘
model_feature_importance_csv = ‘/feature_importance.csv‘
model_train_log = ‘/train.log‘
model_params = ‘/param.json‘
val_diff_file = ‘/val_diff.csv‘
# submission path
submission_path = ‘./data/submission/submission‘
submission_hist_file = ‘/hist.png‘
submission_file = ‘/submission.csv‘
# raw field name
user_label = ‘User_id‘
merchant_label = ‘Merchant_id‘
coupon_label = ‘Coupon_id‘
action_label = ‘Action‘
discount_label = ‘Discount_rate‘
distance_label = ‘Distance‘
date_received_label = ‘Date_received‘
date_consumed_label = ‘Date‘
probability_consumed_label = ‘Probability‘
# global values
consume_time_limit = 15
train_feature_start_time = ‘20160201‘
train_feature_end_time = ‘20160514‘
train_dataset_start_time = ‘20160515‘
train_dataset_end_time = ‘20160615‘
validate_feature_start_time = ‘20160101‘
validate_feature_end_time = ‘20160413‘
validate_dataset_start_time = ‘20160414‘
validate_dataset_end_time = ‘20160514‘
predict_feature_start_time = ‘20160315‘
predict_feature_end_time = ‘20160630‘
predict_dataset_start_time = ‘20160701‘
predict_dataset_end_time = ‘20160731‘
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\
目录 0 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\
目录 0 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\
目录 0 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 1\
文件 2699 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 1\config.py
文件 4075 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 1\data_split.py
文件 13989 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 1\data_view.py
文件 3216 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 1\dl.py
文件 46597 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 1\feature_extract.py
文件 2505 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 1\gen_data.py
文件 3909 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 1\lightgbm.py
文件 5035 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 1\predict.py
文件 2929 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 1\problem.txt
文件 121 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 1\run_all.sh
文件 1126 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 1\util.py
文件 14507 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 1\xgb.py
目录 0 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 2\
文件 61847 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 2\all_data_training.sql
文件 2587 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 2\data_split.sql
文件 3987 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 2\data_view.sql
文件 438 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 2\draw_feature_importance.py
目录 0 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 2\feature_extract\
文件 4671 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 2\feature_extract\coupon_features.sql
文件 8827 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 2\feature_extract\merchant_features.sql
文件 13855 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 2\feature_extract\other_features.sql
文件 28977 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 2\feature_extract\user_features.sql
文件 4624 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 2\feature_extract\user_merchant_features.sql
文件 8763 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 2\features.sql
文件 10173 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 2\fillna.sql
目录 0 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 2\gbdt\
文件 2475 2018-03-08 06:06 O2O-Coupon-Usage-Forecast-master\code\charles\season 2\gbdt\gbdt1.sql
............此处省略101个文件信息
相关资源
- Python-DeepMoji模型的pyTorch实现
- Python-使用DeepFakes实现YouTube视频自动换
- Python-一系列高品质的动漫人脸数据集
- Python-Insightface人脸检测识别的最小化
- Python-自然场景文本检测PSENet的一个
- Python-在特征金字塔网络FPN的Pytorch实现
- Python-PyTorch实时多人姿态估计项目的实
- Python-用PyTorch10实现FasterRCNN和MaskRCNN比
- Python-心脏核磁共振MRI图像分割
- Python-基于YOLOv3的行人检测
- Python-RLSeq2Seq用于SequencetoSequence模型的
- Python-PyTorch对卷积CRF的参考实现
- Python-高效准确的EAST文本检测器的一个
- Python-pytorch实现的人脸检测和人脸识别
- Python-UNet用于医学图像分割的嵌套UN
- Python-TensorFlow弱监督图像分割
- Python-基于tensorflow实现的用textcnn方法
- Python-Keras实现Inceptionv4InceptionResnetv1和
- Python-pytorch中文手册
- Python-FastSCNN的PyTorch实现快速语义分割
- Python-滑动窗口高分辨率显微镜图像分
- Python-使用MovieLens数据集训练的电影推
- Python-机器学习驱动的Web应用程序防火
- Python-subpixel利用Tensorflow的一个子像素
-
Python-汉字的神经风格转移Neuralst
y - Python-神经网络模型能够从音频演讲中
- Python-深度增强学习算法的PyTorch实现策
- Python-基于深度学习的语音增强使用
- Python-基于知识图谱的红楼梦人物关系
- Python-STGAN用于图像合成的空间变换生
评论
共有 条评论