-
大小: 35.37MB文件类型: .zip金币: 1下载: 0 次发布日期: 2023-06-14
- 语言: Python
- 标签:
资源简介
基于深度神经网络和蒙特卡罗树搜索的神经网络搜索
代码片段和文件信息
import numpy as np
from keras.layers.convolutional import Conv2D
from keras.layers import MaxPooling2D AveragePooling2D
from keras.layers.normalization import BatchNormalization
from keras.layers import Activation
from collections import OrderedDict
from itertools import combinations
import copy as cp
import collections
import json
import copy
import random
from datetime import datetime
class arch_generator:
#nasbench test
operators = [ ‘conv1x1-bn-relu‘ ‘conv3x3-bn-relu‘ ‘maxpool3x3‘ ]
MAX_NODES = 6 #inclusive
MAX_EDGES = 9 #inclusive
#maximal depth to go
explore_depth = 5
#common factors
stride_low = 1
stride_up = 1
stride_step = 1
#convolution params
filters_low = 32
filters_up = 64 # 64 [filters_low filters_up]
filter_step = 32
kernel_low = 2
kernel_up = 4
kernel_step = 2
#pooling params
pooling_oprs = [‘max‘ ‘avg‘]
pool_size_low = 1
pool_size_up = 2
pool_step = 1
types = {‘conv‘:0 ‘pool‘:1 ‘norm‘:2 ‘act‘:3}
#store ranges to generate actions
params_range = { }
layer_code_len = 4
def __init__(self):
self.params_range = {“filters“:[self.filters_low self.filters_up] “kernel_size“:[self.kernel_low self.kernel_up]
“pool_size“:[self.pool_size_low self.pool_size_up]
“stride“:[self.stride_low self.stride_up] }
random.seed(datetime.now())
def query_param_range(self name):
return self.params_range[name][0] self.params_range[name][1]
def query_filter_step(self):
return self.filter_step
def query_kernel_step(self):
return self.kernel_step
def query_stride_step(self):
return self.stride_step
def query_pool_step(self):
return self.pool_step
def query_step(self params):
if params == ‘filters‘:
return self.query_filter_step()
elif params == ‘kernel_size‘:
return self.query_kernel_step()
elif params == ‘stride‘:
return self.query_stride_step()
elif params == ‘pool_size‘:
return self.query_pool_step()
return None
def get_min_conv_layer(self id):
layer = collections.OrderedDict()
layer[‘id‘] = id
layer[‘type‘] = ‘conv‘
params = collections.OrderedDict()
params[‘filters‘] = self.filters_low
params[‘kernel_size‘] = self.kernel_low
params[‘stride‘] = self.stride_low
layer[‘params‘] = params
return collections.OrderedDict(sorted(layer.items()))
def get_min_pool_layer(self id):
layer = collections.OrderedDict()
layer[‘id‘] = id
layer[‘type‘] = ‘pool‘
params = collections.OrderedDict()
params[‘pool_size‘] = self.pool_size_low
params[‘stride‘]
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2019-04-15 20:49 AlphaX-NASBench101-master\
文件 22853 2019-04-15 20:49 AlphaX-NASBench101-master\MCTS.py
文件 20588 2019-04-15 20:49 AlphaX-NASBench101-master\MCTS_me
文件 4538 2019-04-15 20:49 AlphaX-NASBench101-master\README.md
目录 0 2019-04-15 20:49 AlphaX-NASBench101-master\alphax-1-net\
文件 37907972 2019-04-15 20:49 AlphaX-NASBench101-master\alphax-1-net\AlphaX_1.pt
文件 4909 2019-04-15 20:49 AlphaX-NASBench101-master\alphax-1-net\model.py
文件 1765 2019-04-15 20:49 AlphaX-NASBench101-master\alphax-1-net\model_test.py
文件 3237 2019-04-15 20:49 AlphaX-NASBench101-master\alphax-1-net\operations.py
文件 12902 2019-04-15 20:49 AlphaX-NASBench101-master\arch_generator.py
文件 1389407 2019-04-15 20:49 AlphaX-NASBench101-master\mcts_speed_nasbench.pdf
文件 313997 2019-04-15 20:49 AlphaX-NASBench101-master\mcts_speed_nasbench.png
文件 20511 2019-04-15 20:49 AlphaX-NASBench101-master\mcts_speed_nasbench_boxplot.pdf
文件 502103 2019-04-15 20:49 AlphaX-NASBench101-master\mcts_viz.png
文件 5086 2019-04-15 20:49 AlphaX-NASBench101-master\net_predictor.py
文件 8698 2019-04-15 20:49 AlphaX-NASBench101-master\net_training.py
相关资源
- Python-SPNLearningAffinityviaSpatialPropagatio
- Python-效果超赞的图片自动增强GANs非成
- Python-VoiceactivitydetectionVAD语音端点检测
- Python-TensorFlow实现的人脸性别年龄识别
- Python-waifu2x利用卷积神经网络放大图片
- Python-TheElementsofStatisticalLearningESL的中
- Python-基于Tensorflow和Keras实现端到端的
- Python-MuseGAN用于乐曲生成的AI
- Python-简单快速实时可定制的机器学习
- Python-PySceneDetect基于PythonOpenCV实现的视
- Python-输入输出隐马尔可夫模型IOHMM的
- Python-基于OpenCVKerasTensorFlow实现深度换
- Python-在PyTorch中关注神经机器翻译的最
- Python-PointSIFT一种类似SIFT的网络模块用
- Python-O2O优惠券使用预测的第一名解决
- Python-TensorFlow神经机翻译seq2seq教程
- Python-FastDTW的一个Python实现
- Python-人体姿势估计和跟踪的简单基线
- Python-Pytorch实现的CRAFT文本检测器
- Python-2016CCF大数据精准营销中搜狗用户
- Python-YOLOv3的PyTorch完整实现
- Python-人群计数相关资源列表
- Python-那些值得读的深度学习论文集合
- Python-利用深度学习预测比特币价格
- Python-基于卷积神经网络的Keras音频分
- Python-PySpark编程最佳实践指南
- Python-TensorFlow语义分割组件
- Python-机器学习完全课程
- Python-Glyce用于汉字表示的字形向量
- Python-RNNoiseRNN音频噪声抑制学习
评论
共有 条评论