资源简介
3dcnn
行为识别网络架构并使用softmax层
用于ucf101数据集
代码片段和文件信息
import tensorflow as tf
import vw_c3d_tools as c3d_tools
N_CLASSE = 9
def C3D_MODEL(xn_classesis_pretrain=True):
# conv(layer_name x out_channels weight_decay biases_decay kernel_size=[333] stride=[11111] is_pretrain=True):
# pool(layer_name x k is_max_pool=True):
# FC_layer(layer_name x out_nodesweight_decay biases_decay):
parameters = []
conv1 = c3d_tools.conv(“conv1“ x 64 0.0005 0 is_pretrain=is_pretrain)
with tf.name_scope(‘pool1‘):
pool1 = c3d_tools.pool(“pool1“ conv1 1 is_max_pool=True)
conv2 = c3d_tools.conv(“conv2“ pool1 128 0.0005 0 is_pretrain=is_pretrain)
with tf.name_scope(‘pool2‘):
pool2 = c3d_tools.pool(“pool2“ conv2 2 is_max_pool=True)
conv3a = c3d_tools.conv(“conv3a“ pool2 256 0.0005 0 is_pretrain=is_pretrain)
conv3b = c3d_tools.conv(“conv3b“ conv3a 256 0.0005 0 is_pretrain=is_pretrain)
with tf.name_scope(‘pool3‘):
pool3 = c3d_tools.pool(“pool3“ conv3b 2 is_max_pool=True)
conv4a = c3d_tools.conv(“conv4a“ pool3 512 0.0005 0 is_pretrain=is_pretrain)
conv4b = c3d_tools.conv(“conv4b“ conv4a 512 0.0005 0 is_pretrain=is_pretrain)
with tf.name_scope(‘pool4‘):
pool4 = c3d_tools.pool(“pool4“ conv4b 2 is_max_pool=True)
conv5a = c3d_tools.conv(“conv5a“ pool4 512 0.0005 0 is_pretrain=is_pretrain)
conv5b = c3d_tools.conv(“conv5b“ conv5a 512 0.0005 0 is_pretrain=is_pretrain)
with tf.name_scope(‘pool5‘):
pool5 = c3d_tools.pool(“pool5“ conv5b 2 is_max_pool=True)
pool5 = tf.transpose(pool5 perm=[01423])
with tf.name_scope(‘fc6‘):
fc6 = c3d_tools.FC_layer(‘fc6‘ pool5 4096 0.0005 0 0.5)
fc6 = c3d_tools.batch_norm(fc6)
with tf.name_scope(‘fc7‘):
fc7 = c3d_tools.FC_layer(‘fc7‘ fc6 4096 0.0005 0 0.5)
fc7 = c3d_tools.batch_norm(fc7)
with tf.name_scope(‘fc8‘):
fc8 = c3d_tools.FC_layer(‘fc8‘ fc7 n_classes 0.0005 0 1)
fc8= c3d_tools.batch_norm(fc8)
return fc8
‘‘‘with tf.name_scope(“softmax“):
softmax = tf.nn.softmax(tf.matmul(fc8W) + b)
return softmax‘‘‘
with tf.name_scope(‘softmax1‘) as scope:
w = tf.Variable(tf.truncated_normal([256N_CLASSE]
dtype=tf.float32
stddev=1e-1)name=‘weights‘)
b = tf.Variable(tf.constant(0.0 shape=[N_CLASSE] dtype=tf.float32)
- 上一篇:快来一起挖掘幸福感吧!.zip
- 下一篇:能够标注人脸边界框和五个关键点
相关资源
- DeepLabV3-Tensorflow-master
- 基于TensorFlow实现CNN文本分类实验指导
- tensorflow2.0 yolo3目标检测算法
- tensorflow制作自己的灰度图像数据集并
- anaconda下安装tensorflow(注:不同版本
- 北京大学曹健老师-人工智能实践:
- Deep Learning With Python - Jason Brownlee
- Python-自然场景文本检测PSENet的一个
- Python-高效准确的EAST文本检测器的一个
- Python-TensorFlow弱监督图像分割
- Python-基于tensorflow实现的用textcnn方法
- Python-subpixel利用Tensorflow的一个子像素
- 【官方文档】TensorFlow Python API docume
-
tensorflow画风迁移代码 st
yle transfer - 简单粗暴 TensorFlow
- [PDF] Reinforcement Learning With Open AI Tens
- tensorflow目标检测代码
- 基于Python的手写字体识别系统
- 基于Tensorflow的人脸识别源码
- python TensorFlow 官方文档中文版
- Python-在TensorFlow中实现实现图像卷积网
- tensorflow-1.9.0-cp37-cp37m-win_amd64.whl
- Faster-RCNN-TensorFlow-Python3.5-master
- 聊天机器人tensorflow
- caffe模型转化为tensorflow模型
- Python-一个非常简单的BiLSTMCRF模型用于
- Python-Tensorflow仿AlphaGo框架实现的AI围棋
- Mask R-CNN源码(TensorFlow版本)
- 基于python3 tensorflow DBN_and_RNN的实现
- tensorflow-0.8.0-cp34-cp34m-linux_x86_64.whl
评论
共有 条评论