资源简介
在windows上利用OpenCV和vs2010实现了sift和surf粗配准,利用Ransac实现精确配准,C++源码,可以运行。
代码片段和文件信息
#include
#include
#include
#include
#include
#include
#include
#include
using namespace cv;
using namespace std;
int main()
{
initModule_nonfree();//初始化模块,使用SIFT或SURF时用到
Ptr detector = FeatureDetector::create( “SURF“ );//创建SIFT特征检测器,可改成SURF/ORB
PtrriptorExtractor> descriptor_extractor = DescriptorExtractor::create( “SURF“ );//创建特征向量生成器,可改成SURF/ORB
PtrriptorMatcher> descriptor_matcher = DescriptorMatcher::create( “BruteForce“ );//创建特征匹配器
if( detector.empty() || descriptor_extractor.empty() )
cout<<“fail to create detector!“;
//读入图像
Mat img1 = imread(“C://Users//YYL//Desktop//c_FourCamera_Match//SIFT_RANSAC//TestImage//Pair2//1.JPG“);
Mat img2 = imread(“C://Users//YYL//Desktop//c_FourCamera_Match//SIFT_RANSAC//TestImage//Pair2//2.JPG“);
//特征点检测
double t = getTickCount();//当前滴答数
vector m_LeftKeym_RightKey;
detector->detect( img1 m_LeftKey );//检测img1中的SIFT特征点,存储到m_LeftKey中
detector->detect( img2 m_RightKey );
cout<<“图像1特征点个数:“< cout<<“图像2特征点个数:“<
//根据特征点计算特征描述子矩阵,即特征向量矩阵
Mat descriptors1descriptors2;
descriptor_extractor->compute( img1 m_LeftKey descriptors1 );
descriptor_extractor->compute( img2 m_RightKey descriptors2 );
t = ((double)getTickCount() - t)/getTickFrequency();
cout<<“SIFT算法用时:“<
cout<<“图像1特征描述矩阵大小:“<riptors1.size()
<<“,特征向量个数:“<riptors1.rows<<“,维数:“<riptors1.cols< cout<<“图像2特征描述矩阵大小:“<riptors2.size()
<<“,特征向量个数:“<riptors2.rows<<“,维数:“<riptors2.cols<
//画出特征点
Mat img_m_LeftKeyimg_m_RightKey;
drawKeypoints(img1m_LeftKeyimg_m_LeftKeyScalar::all(-1)0);
drawKeypoints(img2m_RightKeyimg_m_RightKeyScalar::all(-1)0);
//imshow(“Src1“img_m_LeftKey);
//imshow(“Src2“img_m_RightKey);
//特征匹配
vector matches;//匹配结果
descriptor_matcher->match( descriptors1 descriptors2 matches );//匹配两个图像的特征矩阵
cout<<“Match个数:“<
//计算匹配结果中距离的最大和最小值
//距离是指两个特征向量间的欧式距离,表明两个特征的差异,值越小表明两个特征点越接近
double max_dist = 0;
double min_dist = 100;
for(int i=0; i {
double dist = matches[i].distance;
if(dist < min_dist) min_dist = dist;
if(dist > max_dist) max_dist = dist;
}
cout<<“最大距离:“< cout<<“最小距离:“<
//筛选出较好的匹配点
vector goodMatches;
for(int i=0; i {
if(matches[i].distance < 0.2 * max_dist)
{
goodMatches.push_back(matches[i]);
}
}
cout<<“goodMatch个数:“<
//画出匹配结果
Mat img_matches;
//红色连接的是匹配的特征点对,绿色是未匹配的特征点
drawMatches(img1m_LeftKeyimg2m_RightKeygoodMa
- 上一篇:mfc链接sql数据库查询、修改、删除
- 下一篇:c++与STK开发
评论
共有 条评论