• 大小: 3KB
    文件类型: .rar
    金币: 1
    下载: 0 次
    发布日期: 2021-05-12
  • 语言: Matlab
  • 标签: MATLAB  

资源简介

通过MATLAB绘制一个史密斯圆图,可以显示史密斯圆图的详细细节,并根据给定的参数绘制出发射系数圆等其他图形。很实用

资源截图

代码片段和文件信息

%Victor Aprea Cornell University 6/27/02
%
%Usage: plotsmithchart(ZlZo)
% where Zl is the Load Impedence (possibly complex)
% and Zo is the Characteristic Line Impedence 
% Plots a smith chart along with the reflection coefficient circle
% and the line of intersection with resistive component equal to 1.

% plotsmithchart
% Without any parameters draws a blank smith chart.
% Wavelengths toward the generator are labeled around the perimeter
%
%For example: plotsmithchart(2550)
% Draws a smithchart calculates and plots the reflection coefficient
% for a characteristic impedence of 50 ohms and a load impedence of 25 ohms
% and draws the line of intersection with the R=1 circle.

function answer = plotSmithChart(ZlZo);
constant = linspace(0105);
phaseAngle = linspace(02*pi50);
unitGamma = exp(j*phaseAngle);
%plot the unit circle in the complex plane
hold on;
plot(real(unitGamma)imag(unitGamma)‘r‘);
%set(gcf‘Position‘[0 0 1280 990]);
axis square
zoom on
axis([-1.1 1.1 -1.1 1.1]);

MAX=2001;
bound2=0;
bound3=0;
min_bound1=0;
min_bound2=0;
max_bound2=0;
H=0;
word=0;

Gr = linspace(-11MAX);
hold on;

interval = [[.01:.01:.2][.22:.02:.5][.55:.05:1][1.1:.1:2][2.2:.2:5][6:10][12:2:20][30:10:50]];
interval2= [[.01:.01:.5][.55:.05:1][1.1:.1:2][2.2:.2:5][6:10][12:2:20][30:10:50]];

%plot real axis
plot(Gr zeros(1length(Gr))‘r‘);

%equations were derived using the symbolic toolbox as follows
%solve(‘R=(1-Gr^2-Gi^2)/((1-Gr)^2+Gi^2)‘‘Gi‘)
%bound was derived as follows
%solve(‘1/(R+1)*(-(R+1)*(R-2*R*Gr+R.*Gr^2-1+Gr^2))^(1/2)=0‘‘Gr‘)
for R = interval2
   min_bound1 = (R-1)/(R+1);
   
   if(R<.2)        
      if(mod(R.1)==0) 
         max_bound = (-1+2^2+R^2)/(2^2+R^2+2*R+1);
      elseif(mod(R.02)==0)
         max_bound = (-1+.5^2+R^2)/(.5^2+R^2+2*R+1);
      else
         max_bound = (-1+.2^2+R^2)/(.2^2+R^2+2*R+1);
         if(R==.05 | (R<.151 & R>.149))
            min_bound2 = (-1+.5^2+R^2)/(.5^2+R^2+2*R+1);
            max_bound2 = (-1+1^2+R^2)/(1^2+R^2+2*R+1);
         end
      end
   elseif(R<1)
      if(mod(R.2)==0) 
         max_bound = (-1+5^2+R^2)/(5^2+R^2+2*R+1);
      elseif(mod(R.1)==0) 
         max_bound = (-1+2^2+R^2)/(2^2+R^2+2*R+1); 
      elseif(R==.25 | R==.35 | R==.45)
         temp = (-1+.5^2+R^2)/(.5^2+R^2+2*R+1);
         min_bound2 = max(min_bound1 temp);
         max_bound = (-1+1^2+R^2)/(1^2+R^2+2*R+1);
      elseif(R<.5) 
         max_bound = (-1+.5^2+R^2)/(.5^2+R^2+2*R+1); 
      else 
         max_bound = (-1+1^2+R^2)/(1^2+R^2+2*R+1); 
      end      
   elseif(R<5)
      if(mod(R2)==0)
         max_bound = (-1+20^2+R^2)/(20^2+R^2+2*R+1); 
      elseif(mod(R1)==0)
         max_bound = (-1+10^2+R^2)/(10^2+R^2+2*R+1); 
      elseif(R>2)
         max_bound = (-1+5^2+R^2)/(5^2+R^2+2*R+1);
      else
         if(mod(R.2)==0)
         max_bound = (-1+5^2+R^2)/(5^2+R^2+2*R+1);
         else
     

 属性            大小     日期    时间   名称
----------- ---------  ---------- -----  ----

     文件      16039  2008-10-21 22:32  plotSmithChart.m

----------- ---------  ---------- -----  ----

                16039                    1


评论

共有 条评论