资源简介
随机森林工具包RF_MexStandalone-v0.02-precompiled,已经通过编译,放置到matlab工具箱路径toolbox,设置路径到path调用函数即可实现随机森林回归和分类
代码片段和文件信息
%**************************************************************
%* mex interface to Andy Liaw et al.‘s C code (used in R package randomForest)
%* Added by Abhishek Jaiantilal ( abhishek.jaiantilal@colorado.edu )
%* License: GPLv2
%* Version: 0.02
%
% Calls Classification Random Forest
% A wrapper matlab file that calls the mex file
% This does prediction given the data and the model file
% Options depicted in predict function in http://cran.r-project.org/web/packages/randomForest/randomForest.pdf
%**************************************************************
%function [Y_hat votes] = classRF_predict(Xmodel extra_options)
% requires 2 arguments
% X: data matrix
% model: generated via classRF_train function
% extra_options.predict_all = predict_all if set will send all the prediction.
%
%
% Returns
% Y_hat - prediction for the data
% votes - unnormalized weights for the model
% prediction_per_tree - per tree prediction. the returned object .
% If predict.all=TRUE then the individual component of the returned object is a character
% matrix where each column contains the predicted class by a tree in the forest.
%
%
% Not yet implemented
% proximity
function [Y_new votes prediction_per_tree] = classRF_predict(Xmodel extra_options)
if nargin<2
error(‘need atleast 2 parametersX matrix and model‘);
end
if exist(‘extra_options‘‘var‘)
if isfield(extra_options‘predict_all‘)
predict_all = extra_options.predict_all;
end
end
if ~exist(‘predict_all‘‘var‘); predict_all=0;end
[Y_hatprediction_per_treevotes] = mexClassRF_predict(X‘model.nrnodesmodel.ntreemodel.xbestsplitmodel.classwtmodel.cutoffmodel.treemapmodel.nodestatusmodel.nodeclassmodel.bestvarmodel.ndbigtreemodel.nclass predict_all);
%keyboard
votes = votes‘;
clear mexClassRF_predict
Y_new = double(Y_hat);
new_labels = model.new_labels;
orig_labels = model.orig_labels;
for i=1:length(orig_labels)
Y_new(find(Y_hat==new_labels(i)))=Inf;
Y_new(isinf(Y_new))=orig_labels(i);
end
1;
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2017-02-12 15:42 随机森林工具包RF_MexStandalone-v0.02-precompiled\
文件 1200 2010-02-06 17:01 随机森林工具包RF_MexStandalone-v0.02-precompiled\README_Windows_binary.txt
目录 0 2017-02-12 15:42 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\
目录 0 2017-02-12 15:42 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\
文件 856 2009-04-25 20:39 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\Compile_Check
文件 2693 2009-05-17 03:11 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\Makefile
文件 2523 2009-05-17 03:11 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\Makefile.windows
文件 3255 2010-02-06 17:05 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\README.txt
文件 1470 2010-02-06 17:04 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\Version_History.txt
文件 2166 2009-05-17 03:11 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\classRF_predict.m
文件 14829 2009-05-17 03:11 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\classRF_train.m
文件 557 2009-05-17 03:11 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\compile_linux.m
文件 1718 2010-02-06 16:44 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\compile_windows.m
目录 0 2017-02-12 15:42 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\data\
文件 96300 2009-04-25 20:39 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\data\X_twonorm.txt
文件 600 2009-04-25 20:39 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\data\Y_twonorm.txt
文件 48856 2009-04-25 20:39 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\data\twonorm.mat
文件 20992 2010-02-06 16:29 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\mexClassRF_predict.mexw32
文件 26624 2010-02-06 16:44 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\mexClassRF_predict.mexw64
文件 32256 2010-02-06 16:29 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\mexClassRF_train.mexw32
文件 46080 2010-02-06 16:44 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\mexClassRF_train.mexw64
目录 0 2017-02-12 15:42 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub\
目录 0 2017-02-12 16:31 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub\linux64\
目录 0 2017-02-12 15:42 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub\win32\
文件 6848 2009-04-25 21:39 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub\win32\rfsub.o
目录 0 2017-02-12 15:42 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub\win64\
文件 9840 2009-04-25 20:39 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\precompiled_rfsub\win64\rfsub.o
文件 9840 2009-04-25 20:39 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\rfsub.o
目录 0 2017-02-12 15:42 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\
文件 33889 2009-05-17 03:11 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\classRF.cpp
文件 8947 2009-05-17 03:11 随机森林工具包RF_MexStandalone-v0.02-precompiled\randomforest-matlab\RF_Class_C\src\classTree.cpp
............此处省略44个文件信息
相关资源
- 多个随机森林的matlab代码 含有
- 随机森林用于分类matlab代码
- 随机森林MATLAB174767
- 随机森林matlab工具箱及其它实现方法
- 随机森林工具箱
- house_dataset.csv.zip
- 随机森林的MATLAB实现
- matlab实现的随机森林算法
- 随机森林Matlab
- 基于MATLAB的对图像特征的分类随机森
- 随机森林程序
- matlab版随机森林工具箱-用于分类和回
- 随机森林回归matlab代码
- 随机森林的程序
- 随机森林matlab代码
- 用随机森林的方法对IRIS进行训练和分
- 随机森林工具包
- 可直接运行的随机森林的matlab代码
- 随机森林分类matlab代码
- 随机森林的matlab的预测Iris
- 随机森林matlab代码分类RF/回归RF
- matlab程序下的决策树与随机森林分类
- 随机森林工具包randomforest-matlab(基于
- Random Forest 随机森林算法
- RF_Class_C随机森林算法对图像特征分类
- RandomForest ID3决策树+随机森林算法生成
- Random-Forest-Matlab-master
- randomforest 随机森林的matlab算法实现
- MATLAB神经网络43个案例分析-ri
- randomforest-matlab 基于随机森林思想的分
评论
共有 条评论