资源简介
随机森林的MATLAB代码,在RF_Class_C下写了一个基于随机森林乳腺癌诊断的程序(example.m)
代码片段和文件信息
%**************************************************************
%* mex interface to Andy Liaw et al.‘s C code (used in R package randomForest)
%* Added by Abhishek Jaiantilal ( abhishek.jaiantilal@colorado.edu )
%* License: GPLv2
%* Version: 0.02
%
% Calls Classification Random Forest
% A wrapper matlab file that calls the mex file
% This does prediction given the data and the model file
% Options depicted in predict function in http://cran.r-project.org/web/packages/randomForest/randomForest.pdf
%**************************************************************
%function [Y_hat votes] = classRF_predict(Xmodel extra_options)
% requires 2 arguments
% X: data matrix
% model: generated via classRF_train function
% extra_options.predict_all = predict_all if set will send all the prediction.
%
%
% Returns
% Y_hat - prediction for the data
% votes - unnormalized weights for the model
% prediction_per_tree - per tree prediction. the returned object .
% If predict.all=TRUE then the individual component of the returned object is a character
% matrix where each column contains the predicted class by a tree in the forest.
%
%
% Not yet implemented
% proximity
function [Y_new votes prediction_per_tree] = classRF_predict(Xmodel extra_options)
if nargin<2
error(‘need atleast 2 parametersX matrix and model‘);
end
if exist(‘extra_options‘‘var‘)
if isfield(extra_options‘predict_all‘)
predict_all = extra_options.predict_all;
end
end
if ~exist(‘predict_all‘‘var‘); predict_all=0;end
[Y_hatprediction_per_treevotes] = mexClassRF_predict(X‘model.nrnodesmodel.ntreemodel.xbestsplitmodel.classwtmodel.cutoffmodel.treemapmodel.nodestatusmodel.nodeclassmodel.bestvarmodel.ndbigtreemodel.nclass predict_all);
%keyboard
votes = votes‘;
clear mexClassRF_predict
Y_new = double(Y_hat);
new_labels = model.new_labels;
orig_labels = model.orig_labels;
for i=1:length(orig_labels)
Y_new(find(Y_hat==new_labels(i)))=Inf;
Y_new(isinf(Y_new))=orig_labels(i);
end
1;
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2015-06-04 11:44 randomforest-matlab\
目录 0 2015-06-04 11:44 randomforest-matlab\RF_Class_C\
文件 856 2009-04-25 20:39 randomforest-matlab\RF_Class_C\Compile_Check
文件 2693 2009-05-17 03:11 randomforest-matlab\RF_Class_C\Makefile
文件 2523 2009-05-17 03:11 randomforest-matlab\RF_Class_C\Makefile.windows
文件 3128 2009-05-17 03:11 randomforest-matlab\RF_Class_C\README.txt
文件 1311 2009-05-17 03:11 randomforest-matlab\RF_Class_C\Version_History.txt
文件 2166 2009-05-17 03:11 randomforest-matlab\RF_Class_C\classRF_predict.m
文件 14829 2009-05-17 03:11 randomforest-matlab\RF_Class_C\classRF_train.m
文件 557 2009-05-17 03:11 randomforest-matlab\RF_Class_C\compile_linux.m
文件 1589 2009-05-17 03:11 randomforest-matlab\RF_Class_C\compile_windows.m
目录 0 2015-06-04 11:44 randomforest-matlab\RF_Class_C\data\
文件 96300 2009-04-25 20:39 randomforest-matlab\RF_Class_C\data\X_twonorm.txt
文件 600 2009-04-25 20:39 randomforest-matlab\RF_Class_C\data\Y_twonorm.txt
文件 48856 2009-04-25 20:39 randomforest-matlab\RF_Class_C\data\twonorm.mat
文件 86267 2009-11-29 15:48 randomforest-matlab\RF_Class_C\data.mat
文件 1965 2015-06-03 08:50 randomforest-matlab\RF_Class_C\example.m
文件 26624 2015-06-02 17:34 randomforest-matlab\RF_Class_C\mexClassRF_predict.mexw64
文件 43520 2015-06-02 17:34 randomforest-matlab\RF_Class_C\mexClassRF_train.mexw64
目录 0 2015-06-04 11:44 randomforest-matlab\RF_Class_C\precompiled_rfsub\
目录 0 2015-06-04 11:44 randomforest-matlab\RF_Class_C\precompiled_rfsub\linux64\
目录 0 2015-06-04 11:44 randomforest-matlab\RF_Class_C\precompiled_rfsub\win32\
文件 6848 2009-04-25 21:39 randomforest-matlab\RF_Class_C\precompiled_rfsub\win32\rfsub.o
目录 0 2015-06-04 11:44 randomforest-matlab\RF_Class_C\precompiled_rfsub\win64\
文件 9840 2009-04-25 20:39 randomforest-matlab\RF_Class_C\precompiled_rfsub\win64\rfsub.o
文件 9840 2009-04-25 20:39 randomforest-matlab\RF_Class_C\rfsub.o
目录 0 2015-06-04 11:44 randomforest-matlab\RF_Class_C\src\
文件 33889 2009-05-17 03:11 randomforest-matlab\RF_Class_C\src\classRF.cpp
文件 8947 2009-05-17 03:11 randomforest-matlab\RF_Class_C\src\classTree.cpp
文件 7678 2009-04-25 20:39 randomforest-matlab\RF_Class_C\src\cokus.cpp
文件 1189 2009-04-25 20:39 randomforest-matlab\RF_Class_C\src\cokus_test.cpp
............此处省略38个文件信息
- 上一篇:三相逆变模型预测控制.rar
- 下一篇:最小二乘法曲线拟合的matlab实现
相关资源
- 随机森林matlab代码
- 用随机森林的方法对IRIS进行训练和分
- 随机森林工具包
- 可直接运行的随机森林的matlab代码
- 随机森林工具包RF_MexStandalone-v0.02-pr
- 随机森林分类matlab代码
- 随机森林的matlab的预测Iris
- 随机森林matlab代码分类RF/回归RF
- matlab程序下的决策树与随机森林分类
- 随机森林工具包randomforest-matlab(基于
- Random Forest 随机森林算法
- RF_Class_C随机森林算法对图像特征分类
- RandomForest ID3决策树+随机森林算法生成
- Random-Forest-Matlab-master
- randomforest 随机森林的matlab算法实现
- MATLAB神经网络43个案例分析-ri
- randomforest-matlab 基于随机森林思想的分
- Radom-Forest[ok] 随机森林Matlab代码并附有
- RF_MexStandalone-v0[1].02
- Random-Forest MATLAB语言的随机森林算法的
- exampleRF 随机森林在MATLAB上的实现
- Windows-Precompiled-RF_MexStandalone-v0.02-随机
- 随机森林算法的matlab实现
评论
共有 条评论