资源简介
现有的LSSVM工具箱,自带PSO优化,参数无需调整,Matlab编写的人工蜂群算法代码,含详细注释和测试函数,简短易懂,执行顺畅。可用于解决无约束优化问题。
代码片段和文件信息
function [featureseigveceigvals] = AFEm(Xskernel kernel_parsXtypenbeigveceigvals)
% Automatic Feature Extraction by Nystrom method
%
%
% >> features = AFE(X kernel sig2 Xt)
%
% Description
% Using the Nystr�m approximation method the mapping of data to
% the feature space can be evaluated explicitly. This gives the
% features that one can use for a linear regression or
% classification. The decomposition of the mapping to the feature
% space relies on the eigenvalue decomposition of the kernel
% matrix. The Matlab (‘eigs‘) or Nystr�m‘s (‘eign‘) approximation
% using the nb most important eigenvectors/eigenvalues can be
% used. The eigenvalue decomposition is not re-calculated if it is
% passed as an extra argument. This routine internally calls a cmex file.
%
% Full syntax
%
% >> [features U lam] = AFE(X kernel sig2 Xt)
% >> [features U lam] = AFE(X kernel sig2 Xt type)
% >> [features U lam] = AFE(X kernel sig2 Xt type nb)
% >> features = AFE(X kernel sig2 Xt [][] U lam)
%
% Outputs
% features : Nt x nb matrix with extracted features
% U(*) : N x nb matrix with eigenvectors
% lam(*) : nb x 1 vector with eigenvalues
% Inputs
% X : N x d matrix with input data
% kernel : Name of the used kernel (e.g. ‘RBF_kernel‘)
% sig2 : parameter of the used kernel
% Xt : Data from which the features are extracted
% type(*): ‘eig‘(*) ‘eigs‘ or ‘eign‘
% nb(*) : Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation
% U(*) : N x nb matrix with eigenvectors
% lam(*) : nb x 1 vector with eigenvalues
%
% See also:
% kernel_matrix RBF_kernel demo_fixedsize
% Copyright (c) 2011 KULeuven-ESAT-SCD License & help @ http://www.esat.kuleuven.be/sista/lssvmlab
N = size(X1);
Nc = size(Xs1);
eval(‘type;‘‘type=‘‘eig‘‘;‘);
if ~(strcmp(type‘eig‘) || strcmp(type‘eigs‘) || strcmp(type‘eign‘) )
error(‘Type needs to be ‘‘eig‘‘ ‘‘eigs‘‘ or ‘‘eign‘‘...‘);
end
% eigenvalue decomposition to do..
if nargin<=7
omega = kernel_matrix(Xs kernel kernel_pars);
if strcmp(type‘eig‘)
[eigveceigvals] = eig(omega+2*eye(size(omega1))); % + jitter factor
eigvals = diag(eigvals);
clear omega
elseif strcmp(type‘eigs‘)
eval(‘nb;‘‘nb=min(size(omega1)10);‘); options.disp = 0;
[eigveceigvals] = eigs(omega+2*eye(size(omega1))nb‘lm‘options); clear omega % + jitter factor
elseif strcmp(type‘eign‘)
eval(‘nb;‘‘nb=min(size(omega1)10);‘);
[eigveceigvals] = eign(omega+2*eye(size(omega1))nb); clear omega % + jitter factor
end
eigvals = (eigvals-2)/Nc;
peff = eigvals>eps;
eigvals = eigvals(peff);
eigvec = eigvec(:peff); clear peff
end
if strcmp(kernel‘RBF_kernel‘)
omegaN = sum(X.^22)*ones(1Nc);
omegaN = omegaN + ones(N1)*sum(Xs.^22)‘;
omegaN = omegaN -2*X*Xs‘; clear X Xs
omegaN = exp(-o
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2015-10-30 17:06 LSSVMlabv1_8_R2009b_R2011a\
文件 3437 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\AFEm.m
文件 603 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\MLP_kernel.m
文件 1105 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\RBF_kernel.m
文件 5785 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\bay_errorbar.m
文件 1998 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\bay_initlssvm.m
文件 10339 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\bay_lssvm.m
文件 8187 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\bay_lssvmARD.m
文件 9358 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\bay_modoutClass.m
文件 5843 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\bay_optimize.m
文件 4312 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\bay_rr.m
文件 1479 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\bitreverse32.m
文件 5576 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\changelssvm.m
文件 4744 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\cilssvm.m
文件 4245 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\code.m
文件 5194 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\code_ECOC.m
文件 548 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\code_MOC.m
文件 361 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\code_OneVsAll.m
文件 576 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\code_OneVsOne.m
文件 2107 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\codedist_bay.m
文件 753 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\codedist_hamming.m
文件 2015 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\codedist_loss.m
文件 4126 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\codelssvm.m
文件 5847 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\crossvalidate.m
文件 3941 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\crossvalidatelssvm.m
文件 3188 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\csa.m
文件 2251 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\demo_fixedclass.m
文件 3233 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\demo_fixedsize.m
文件 3447 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\demo_yinyang.m
文件 3461 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\democlass.m
文件 2147 2015-09-29 17:30 LSSVMlabv1_8_R2009b_R2011a\democonfint.m
............此处省略52个文件信息
- 上一篇:matlab 2012b 破解版
- 下一篇:用PSO优化LSSVM的参数
相关资源
- 用PSO优化LSSVM的参数
- 基于PSO算法的PID控制器设计与实现论
- PSO粒子群算法万能matlab代码注释详细
- CLPSO算法matlab代码
- 电动汽车充电的模拟退火PSO算法
- qpso算法matlab代码
- MATLAB——基于PSO工具箱的函数寻优算
- PSO-SVM 粒子算法优化支持向量机MATLA
- PSO优化BP神经网络模型.zip
- PSO算法R实现
- 基于粒子群算法的PID控制器优化设计
- PSO算法-ACKELY函数测试
- 多目标粒子群算法matlab
- 粒子群PSO优化LSSVM的完整程序
- PSO(粒子群算法)MATlab程序
- 经济调度粒子群算法matlab源程序
- PSO-ELM源码
- 标准粒子群算法代码PSO
- PSO 优化径向基神经网络参数
- QPSO 算法
- pso algorithms 粒子群算法
- PSO Toolbox
- pso with wind 40uint
- Takamoli
- 51个城市的TSP问题
- pso优化bp神经网络
- optimal placement of dg
- 多目标粒子群算法
- 细菌觅食算法与粒子群优化算法相结
- PSO测试函数代码
评论
共有 条评论